Skip to main content
Log in

Applying the spectral stochastic finite element method in multiple-random field RC structures

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

This paper uses the spectral stochastic finite element method (SSFEM) for analyzing reinforced concrete (RC) beam/slab problems. In doing so, it presents a new framework to study how the correlation length of a random field (RF) with uncertain parameters will affect modeling uncertainties and reliability evaluations. It considers: 1) different correlation lengths for uncertainty parameters, and 2) dead and live loads as well as the elasticity moduli of concrete and steel as a multi-dimensional RF in concrete structures. To show the SSFEM’s efficiency in the study of concrete structures and to evaluate the sensitivity of the correlation length effects in evaluating the reliability, two examples of RC beams and slabs have been investigated. According to the results, the RF correlation length is effective in modeling uncertainties and evaluating reliabilities; the longer the correlation length, the greater the dispersion range of the structure response and the higher the failure probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Der Kiureghian A, Haukaas T, Fujimura K. Structural reliability software at the University of California, Berkeley. Structural Safety, 2006, 28(1–2): 44–67

    Article  Google Scholar 

  2. Der Kiureghian A. Analysis of structural reliability under parameter uncertainties. Probabilistic Engineering Mechanics, 2008, 23(4): 351–358

    Article  Google Scholar 

  3. Depina I, Le T M H, Fenton G, Eiksund G. Reliability analysis with metamodel line sampling. Structural Safety, 2016, 60: 1–15

    Article  Google Scholar 

  4. Sakata S, Okuda K, Ikeda K. Stochastic analysis of laminated composite plate considering stochastic homogenization problem. Frontiers of Structural and Civil Engineering, 2015, 9(2): 141–153

    Article  Google Scholar 

  5. Soltani N, Alembagheri M, Khaneghahi M H. Risk-based probabilistic thermal-stress analysis of concrete arch dams. Frontiers of Structural and Civil Engineering, 2019, 13(5): 1007–1019

    Article  Google Scholar 

  6. Ghavidel A, Rashki M, Ghohani Arab H, Azhdary Moghaddam M. Reliability mesh convergence analysis by introducing expanded control variates. Frontiers of Structural and Civil Engineering, 2020, 14(4): 1012–1023

    Article  Google Scholar 

  7. Rashki M, Ghavidel A, Ghohani Arab H, Mousavi S R. Low-cost finite element method-based reliability analysis using adjusted control variate technique. Structural Safety, 2018, 75: 133–142

    Article  Google Scholar 

  8. Song K, Zhang Y, Zhuang X, Yu X, Song B. Reliability-based design optimization using adaptive surrogate model and importance sampling-based modified SORA method. Engineering with Computers, 2021, 37(2): 1295–1314

    Article  Google Scholar 

  9. Papaioannou I, Straub D. Combination line sampling for structural reliability analysis. Structural Safety, 2021, 88: 102025

    Article  Google Scholar 

  10. Papadopoulos V, Giovanis D G. Stochastic Finite Element Methods: An Introduction. Cham: Springer, 2018: 47–70

    Book  Google Scholar 

  11. Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach. New York: Springer, 1991: 101–119

    Book  Google Scholar 

  12. Bae H R, Forster E E. Improved Neumann expansion method for stochastic finite element analysis. Journal of Aircraft, 2017, 54(3): 967–979

    Article  Google Scholar 

  13. Sofi A, Romeo E. A unified response surface framework for the interval and stochastic finite element analysis of structures with uncertain parameters. Probabilistic Engineering Mechanics, 2018, 54: 25–36

    Article  Google Scholar 

  14. Wu F, Yao L Y, Hu M, He Z C. A stochastic perturbation edge-based smoothed finite element method for the analysis of uncertain structural-acoustics problems with random variables. Engineering Analysis with Boundary Elements, 2017, 80: 116–126

    Article  MathSciNet  Google Scholar 

  15. Papadopoulos V, Kalogeris I, Giovanis D G. A spectral stochastic formulation for nonlinear framed structures. Probabilistic Engineering Mechanics, 2019, 55: 90–101

    Article  Google Scholar 

  16. Chen N Z, Soares C G. Spectral stochastic finite element analysis for laminated composite plates. Computer Methods in Applied Mechanics and Engineering, 2008, 197(51–52): 4830–4839

    Article  Google Scholar 

  17. Stefanou G, Papadrakakis M. Stochastic finite element analysis of shells with combined random material and geometric properties. Computer Methods in Applied Mechanics and Engineering, 2004, 193(1–2): 139–160

    Article  Google Scholar 

  18. Kandler G, Füssl J, Eberhardsteiner J. Stochastic finite element approaches for wood-based products: theoretical framework and review of methods. Wood Science and Technology, 2015, 49(5): 1055–1097

    Article  Google Scholar 

  19. Li K, Wu D, Gao W. Spectral stochastic isogeometric analysis for static response of FGM plate with material uncertainty. Thin-walled Structures, 2018, 132: 504–521

    Article  Google Scholar 

  20. Zhou X Y, Gosling P D, Ullah Z, Kaczmarczyk L, Pearce C J. Stochastic multi-scale finite element based reliability analysis for laminated composite structures. Applied Mathematical Modelling, 2017, 45: 457–473

    Article  MathSciNet  Google Scholar 

  21. Sudret B, Der Kiureghian A. Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report. Berkeley, CA: University of California, 2000

    Google Scholar 

  22. Yazdani A, Arab H G, Rashki M. Simplified spectral stochastic finite element formulations for uncertainty quantification of engineering structures. Structures, 2020, 28: 1924–1945

    Article  Google Scholar 

  23. Schietzold F N, Schmidt A, Dannert M M, Fau A, Fleury R M, Graf W, Kaliske M, Könke C, Lahmer T, Nackenhorst U. Development of fuzzy probability based random fields for the numerical structural design. GAMM-Mitteilungen, 2019, 42(1): e201900004

    Article  MathSciNet  Google Scholar 

  24. Schmidt A, Henning C, Herbrandt S, Könke C, Ickstadt K, Ricken T, Lahmer T. Numerical studies of earth structure assessment via the theory of porous media using fuzzy probability based random field material descriptions. GAMM-Mitteilungen, 2019, 42(1): e201900007

    Article  MathSciNet  Google Scholar 

  25. Zakian P, Khaji N. A stochastic spectral finite element method for wave propagation analyses with medium uncertainties. Applied Mathematical Modelling, 2018, 63: 84–108

    Article  MathSciNet  Google Scholar 

  26. Wiener N. The homogeneous chaos. American Journal of Mathematics, 1938, 60(4): 897–936

    Article  MathSciNet  Google Scholar 

  27. Chandrupatla T R, Belegundu A D. Introduction to Finite Elements in Engineering. Upper Saddle River, NJ: Prentice Hall, 2002

    MATH  Google Scholar 

  28. Nariman N A, Hamdia K, Ramadan A M, Sadaghian H. Optimum design of flexural strength and stiffness for reinforced concrete beams using machine learning. Applied Sciences, 2021, 11(18): 8762

    Article  Google Scholar 

  29. Timoshenko S P, Woinowsky-Krieger S. Theory of Plates and Shells. New York: McGraw-hill, 1959

    MATH  Google Scholar 

  30. Vu-Bac N, Duong T X, Lahmer T, Zhuang X, Sauer R A, Park H S, Rabczuk T. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 427–455

    Article  MathSciNet  Google Scholar 

  31. Vu-Bac N, Duong T X, Lahmer T, Areias P, Sauer R A, Park H S, Rabczuk T. A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 480–510

    Article  MathSciNet  Google Scholar 

  32. ACI 318-08. Building Code Requirements for Structural Concrete and Commentary. Farmington Hills: American Concrete Institute, 2008

    Google Scholar 

  33. Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535

    Article  Google Scholar 

  34. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Article  Google Scholar 

  35. Vu-Bac N, Zhuang X, Rabczuk T. Uncertainty quantification for mechanical properties of polyethylene based on fully atomistic model. Materials, 2019, 12(21): 3613

    Article  Google Scholar 

  36. Liu B, Vu-Bac N, Zhuang X, Rabczuk T. Stochastic multiscale modeling of heat conductivity of polymeric clay nanocomposites. Mechanics of Materials, 2020, 142: 103280

    Article  Google Scholar 

  37. Liu B, Vu-Bac N, Rabczuk T. A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms. Composite Structures, 2021, 273: 114269

    Article  Google Scholar 

  38. Frangopol D M. Probability concepts in engineering: Emphasis on applications to civil and environmental engineering. Structure and Infrastructure Engineering, 2008, 4(5): 413–414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Yazdani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, A. Applying the spectral stochastic finite element method in multiple-random field RC structures. Front. Struct. Civ. Eng. 16, 434–447 (2022). https://doi.org/10.1007/s11709-022-0820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-022-0820-6

Keywords

Navigation