Skip to main content

Advertisement

Log in

Ionic Wind Intensity Enhancement and Ozone Reduction in a Solid-State Fan Via Electromagnetic Field Action

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

It is crucial to develop a green solid-state fan (SSF) with high corona wind intensity and minimal ozone emission. The application of a magnetic field might be a feasible alternative. A magnetic field enhanced SSF with a simple structure was proposed. This research used a physical model to quantitatively investigate the effects of a magnetic field on corona wind velocity and body force. Under the influence of a magnetic field, the variation of voltammetry characteristics, corona wind strength, flow distribution, and ozone concentration were explored experimentally using a prototype SSF. With the aid of a magnetic field, the corona wind velocity and body force increased, according to the findings. The traveling route of electrons seems to shift rapidly. The SSF with a magnetic field has a lower corona current, lower ozone formation, greater flow yield, and a decline in ozone molecules when compared to the SSF without a magnetic field. The greatest corona wind velocity measured was 2.54 m/s when a 6.5 kV-voltage, a 5 mm-discharge gap, and a 24.28 mT-magnetic flux intensity were applied. The outcomes of this study might aid in the improvement of corona wind intensity and the development of green SSFs for cooling electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang J, Zhu T, Wang JB, Cai YX, Li XH (2020) Optimization of a green solid-state fan for electronics cooling applications. Sustain Energy Technol Assess 39:100703. https://doi.org/10.1016/j.seta.2020.100703

    Article  Google Scholar 

  2. Huang RT, Sheu WJ, Wang CC (2009) Heat transfer enhancement by needle-arrayed electrodes—an EHD integrated cooling system. Energy Convers Manage 50(7):1789–1796. https://doi.org/10.1016/j.enconman.2009.03.017

    Article  CAS  Google Scholar 

  3. Moreau E, Touchard G (2008) Enhancing the mechanical efficiency of electric wind in corona discharges. J Electrostat 66(1):39–44. https://doi.org/10.1016/j.elstat.2007.08.006

    Article  Google Scholar 

  4. Fang Z, Liu Y, Cai LL (2012) Discharge characteristics of atmosphere pressure plasma jet in Ar. High Volt Eng 38(7):1613–1622. https://doi.org/10.3969/j.issn.1003-6520.2012.07.012 (in Chinese)

    Article  CAS  Google Scholar 

  5. Li DR, Li BC, Zhang SJ (2018) Study on emission performance of low voltage and high density plasma electrode. Sci Technol Eng 18(2):1–6 (in Chinese)

    Google Scholar 

  6. Wang J, Zhu T, Cai YX, Zhang JF, Wang JB (2020) Review on the recent development of corona wind and its application in heat transfer enhancement. Int J Heat Mass Transf 152:119545. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119545

    Article  Google Scholar 

  7. Johnson MJ, Go DB (2017) Recent advances in electrohydrodynamic pumps operated by ionic winds: a review. Plasma Sources Sci Technol 26:103002. https://doi.org/10.1088/1361-6595/aa88e7

    Article  CAS  Google Scholar 

  8. Feng J, Wang CH, Liu QM, Wu CL (2019) Enhancement of heat transfer via corona discharge by using needle-mesh and needle-fin electrodes. Int J Heat Mass Transf 130:640–649. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.103

    Article  Google Scholar 

  9. Wang J, Zhu T, Cai YX, Wang JB, Wang J (2020) Development and application of a solid-state fan for enhanced heat dissipation. Appl Therm Eng 169:114922. https://doi.org/10.1016/j.applthermaleng.2020.114922

    Article  CAS  Google Scholar 

  10. Zhang JF, Kong LJ, Qu JG, Wang S, Qu ZG (2019) Numerical and experimental investigation on configuration optimization of the large-size ionic wind pump. Energy 171:624–630. https://doi.org/10.1016/j.energy.2019.01.086

    Article  Google Scholar 

  11. Wang JB, Li XH, Wang J, Zhu T, Bao YC (2020) Thermal performance evaluation of a thermoelectric cooler coupled with corona wind. Appl Therm Eng 179:115753. https://doi.org/10.1016/j.applthermaleng.2020.115753

    Article  Google Scholar 

  12. Lee SJ, Li L, Kwon K, Kim W, Kim D (2015) Parallel integration of ionic wind generators on PCBs for enhancing flow rate. Microsyst Technol 21(7):1465–1471. https://doi.org/10.1007/s00542-014-2320-7

    Article  CAS  Google Scholar 

  13. Rickard M, Dunn-Rankin D (2007) Numerical simulation of a tubular ion-driven wind generator. J Electrostat 65:646–654. https://doi.org/10.1016/j.elstat.2007.04.003

    Article  Google Scholar 

  14. Moreau E, Benard N, Alicalapa F, Douyèreb A (2015) Electrohydrodynamic force produced by a corona discharge between a wire active electrode and several cylinder electrodes–application to electric propulsion. J Electrostat 76:194–200. https://doi.org/10.1016/j.elstat.2015.05.025

    Article  Google Scholar 

  15. Mi JF, Xu DX, Sun YH, Du SN, Chen Y (2008) Influence of magnetic fields on negative corona discharge currents. J Electrostat 66:457–462. https://doi.org/10.1016/j.elstat.2008.04.010

    Article  CAS  Google Scholar 

  16. Kim JG, Jung JS (2019) Application of a magnetic flux in the corona discharge zone to improve ion thrust via ion acceleration. J Electr Eng Technol 14:1683–1688. https://doi.org/10.1007/s42835-019-00204-y

    Article  Google Scholar 

  17. Zhou DS, Tang JF, Kang PT, Wei LQ, Zhang CH (2018) Effects of magnetic field intensity on ionic wind characteristics. J Electrostat 96:99–103. https://doi.org/10.1016/j.elstat.2018.10.007

    Article  Google Scholar 

  18. Zeng MJ, Zhang Q, Zhang XM, Zhang JF (2020) Study and performance optimization of large–section needle–ring ionic wind generator. China Sci Paper 15(3):341–346 (in Chinese)

    Google Scholar 

  19. Ahmedou SO, Havet M (2009) Effect of process parameters on the EHD airflow. J Electrostat 67(2–3):222–227. https://doi.org/10.1016/j.elstat.2009.01.055

    Article  Google Scholar 

  20. Ghazanchaei M, Adamiak K, Castle Peter GS (2015) Predicted flow characteristics of a wire-nonparallel plate type electrohydrodynamic gas pump using the finite element method. J Electrostat 73:103–111. https://doi.org/10.1016/j.elstat.2014.11.003

    Article  Google Scholar 

  21. Liao RJ, Wu FF, Liu XH, Yang F, Yang LJ, Zhou Z, Zhai L (2012) Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Phys Sin 61(24):370–380 (in Chinese)

    Google Scholar 

  22. Tran T N, Golosnoy I O, Lewin P L, Georghiou G E (2009) Two dimensional studies of trichel pulses in air using the finite element method. In: Annual report conference of electrical insulation and dielectric phenomena, Virginia, USA, pp. 592–595. https://doi.org/10.1109/CEIDP.2009.5377737

  23. Wang ML, Qian R, Zhuo SJ, Chen Q, Li ZQ, Zhao B (2020) Larmor precession: observation and utilization for boosting the signal intensity of radio frequency glow discharge mass spectrometry. Anal Chem 92(14):9528–9535. https://doi.org/10.1021/acs.analchem.0c00588

    Article  CAS  PubMed  Google Scholar 

  24. Xu DX, Sheng LX, Wang HJ, Sun YH, Zhang XY, Mi JF (2007) Study of magnetically enhanced corona pre-charger. J Electrostat 65:101–106. https://doi.org/10.1016/j.elstat.2006.07.007

    Article  CAS  Google Scholar 

  25. Park JY, Kim GH, Kim JD, Koh HS, Lee DC (1998) NOx removal using DC corona discharge with magnetic field. Combust Sci Technol 133(1–3):65–77. https://doi.org/10.1080/00102209808952027

    Article  CAS  Google Scholar 

  26. Rapp D, Englander-Golden P (1965) Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization. J Chem Phys 43:1464–1479. https://doi.org/10.1063/1.1696957

    Article  CAS  Google Scholar 

  27. Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35(1):31–53

    Article  CAS  Google Scholar 

  28. Song MM, Zhou QH, Sun Q, Yang W, Dong Y (2021) Application of coulomb collision cross-section in particle-in-cell simulation of plasma. High Power Laser Part Beams 33(03):88–96. https://doi.org/10.11884/HPLPB202133.200179 (in Chinese)

    Article  Google Scholar 

  29. Naidis GV (1992) Modeling of plasma chemical processes in stable corona discharges at thin wires. J Phys D 25(3):477–480. https://doi.org/10.1088/0022-3727/25/3/021

    Article  CAS  Google Scholar 

  30. Kawamoto H, Umezu S (2008) Electrostatic micro-ozone fan that utilizes ionic wind induced in pin-to-plate corona discharge system. J Electrostat 66(7–8):445–454. https://doi.org/10.1016/j.elstat.2008.04.009

    Article  Google Scholar 

  31. Yagi S, Tanaka M (1979) Mechanism of ozone generation in air-fed ozonisers. J Phys D 12(9):1509–1520

    Article  CAS  Google Scholar 

  32. Takaki K, Chang JS, Kostov KG (2004) Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor. IEEE Trans Dielectr Electr Insul 11(3):481–490. https://doi.org/10.1109/TDEI.2004.1306726

    Article  CAS  Google Scholar 

  33. Chen JH, Davidson JH (2002) Ozone production in the positive DC corona discharge: model and comparison to experiments. Plasma Chem Plasma Process 22(4):495–522. https://doi.org/10.1023/A:1021315412208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the support by ‘the Natural Science Foundation of Jiangsu Province (Grants No. BK20181446)’, ‘Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University, Grants No. LLEUTS-202008)’, ‘the Foundation of Key Laboratory of Thermo-Fluid Science and Engineering (Xi'an Jiaotong University, Grants No. KLTFSE2019KFJJ01)’, and ‘A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cai, Rj., Zhu, T. et al. Ionic Wind Intensity Enhancement and Ozone Reduction in a Solid-State Fan Via Electromagnetic Field Action. Plasma Chem Plasma Process 42, 1045–1067 (2022). https://doi.org/10.1007/s11090-022-10273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10273-z

Keywords

Navigation