Skip to main content
Log in

Deconstructing the Ergogenic Effects of Photobiomodulation: A Systematic Review and Meta-analysis of its Efficacy in Improving Mode-Specific Exercise Performance in Humans

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Photobiomodulation therapy (PBMT) is defined as non-thermal electromagnetic irradiation through laser or light-emitting diode sources. In recent decades, PBMT has attracted attention as a potential preconditioning method. The current meta-analysis was conducted to assess the effectiveness of PBMT in improving mode-specific exercise performance in healthy young adults.

Methods

A computerized literature search was conducted, ending on 15 May 2022. The databases searched were PubMed, Cochrane Central Register of Controlled Trials, Embase, SPORTDiscus, and the Physiotherapy Evidence Database. Inclusion/exclusion criteria limited articles to crossover, double-blind, placebo-controlled studies investigating the PBMT effects as a preconditioning method. The included trials were synthesized according to exercise mode (single-joint, cycling, running, and swimming). All results were combined using the standardized mean differences (SMDs) method and the 95% confidence intervals (CIs) were described.

Results

A total of 37 individual studies, employing 78 exercise performance measurements in 586 participants, were included in the analyses. In single-joint exercises, PBMT improved muscle endurance performance (SMD 0.27, 95% CI 0.12–0.41; p < 0.01) but not muscle strength performance (p = 0.92). In cycling, PBMT improved time to exhaustion performance (SMD 0.35, 95% CI 0.10–0.59; p < 0.01) but had no effect on all-out sprint performance (p = 0.96). Similarly, PBMT had no effect on time to exhaustion (p = 0.10), time-trial (p = 0.61), or repeated-sprint (p = 0.37) performance in running and no effect on time-trial performance in swimming (p = 0.81).

Conclusion

PBMT improves muscle endurance performance in single-joint exercises and time to exhaustion performance in cycling but is not effective for muscle strength performance in single-joint exercises, running, or swimming performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chung H, Dai T, Sharma S, Huang Y, Carroll J, Hamblin M. The nuts and bolts of low-level laser (Light) therapy. Ann Biomed Eng. 2012;40:516–33.

    Article  PubMed  Google Scholar 

  2. Stausholm MB, Naterstad IF, Joensen J, Lopes-Martins RAB, Saebo H, Lund H, et al. Efficacy of low-level laser therapy on pain and disability in knee osteoarthritis: systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2019;9: e031142.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4(3):337–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lopes-Martins RÁB, Marcos RL, Leonardo PS, Prianti AC Jr, Muscará MN, Aimbire F, et al. Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol. 2006;101:283–8.

    Article  PubMed  Google Scholar 

  5. Leal Junior ECP, Lopes-Martins ÁB, Baroni BM, De Marchi T, Rossi RP, Grosselli D, et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617–23.

    Article  PubMed  Google Scholar 

  6. Leal Junior ECP, Lopes-Martins RÁB, Vanin AA, Baroni BM, Grosselli D, De Marchi T, et al. Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci. 2009;24:425–31.

    Article  PubMed  Google Scholar 

  7. Dutra YM, Claus GMH, Malta EDS, Brisola GMP, Esco MR, Ferraresi C, et al. Acute photobiomodulation by LED does not alter muscle fatigue and cycling performance. Med Sci Sports Exerc. 2020;52:2448–58.

    Article  CAS  PubMed  Google Scholar 

  8. Orssatto LBR, Rossato M, Vargas M, Diefenthaeler F, De La Rocha FC. Photobiomodulation therapy effects on resistance training volume and discomfort in well-trained adults: a randomized, double-blind, placebo-controlled trial. Photobiomod Photomed Laser Surg. 2020;38:720–6.

    CAS  Google Scholar 

  9. De Almeida P, Lopes-Martins RAB, Tomazoni SS, Silva JA Jr, Carvalho Pde T, Bjordal JM, et al. Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol. 2011;87:1159–63.

    Article  PubMed  Google Scholar 

  10. De Marchi T, Leal ECP, Bortoli C, Tomazoni SS, Lopes-Martins RÁB, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27:231–6.

    Article  PubMed  Google Scholar 

  11. da Silva Alves MA, Pinfildi CE, Neto LN, Lourenço RP, de Azevedo PHSM, Dourado VZ. Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci. 2014;29:1945–51.

    Article  PubMed  Google Scholar 

  12. Malta EDS, De Poli RAB, Brisola GMP, Milioni F, Miyagi WE, Machado FA, et al. Acute LED irradiation does not change the anaerobic capacity and time to exhaustion during a high-intensity running effort: a double-blind, crossover, and placebo-controlled study: Effects of LED irradiation on anaerobic capacity and performance in runnin. Lasers Med Sci. 2016;31:1473–80.

    Article  Google Scholar 

  13. Pinto HD, Vanin AA, Miranda EF, Tomazoni SS, Johnson DS, Albuquerque-Pontes GM, et al. Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res. 2016;30:3329–38.

    Article  PubMed  Google Scholar 

  14. Hemmings TJ, Kendall KL, Dobson JL. Identifying dosage effect of light-emitting diode therapy on muscular fatigue in quadriceps. J Strength Cond Res. 2017;31(2):395–402.

    Article  PubMed  Google Scholar 

  15. Dellagrana RA, Rossato M, Sakugawa RL, Lazzari CD, Baroni BM, Diefenthaeler F. Dose-response effect of photobiomodulation therapy on neuromuscular economy during submaximal running. Lasers Med Sci. 2018;33:329–36.

    Article  PubMed  Google Scholar 

  16. Tomazoni SS, Machado CDSM, De Marchi T, Casalechi HL, Bjordal JM, De Carvalho PDTC, et al. Infrared low-level laser therapy (photobiomodulation therapy) before intense progressive running test of high-level soccer players: effects on functional, muscle damage, inflammatory, and oxidative stress markers—a randomized controlled trial. Oxid Med Cell Longev. 2019;2019:6239058.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol. 2014;140:344–58.

    Article  CAS  Google Scholar 

  18. Ferraresi C, Kaippert B, Avci P, Huang YY, De Sousa MVP, Bagnato VS, et al. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol. 2015;91:411–6.

    Article  CAS  PubMed  Google Scholar 

  19. Ferraresi C, de Sousa MVP, Huang YY, Bagnato VS, Parizotto NA, Hamblin MR. Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci. 2015;30:1259–67.

    Article  PubMed  Google Scholar 

  20. Shiva S, Gladwin MT. Shining a light on tissue NO stores: Near infrared release of NO from nitrite and nitrosylated hemes. J Mol Cell Cardiol. 2009;46:1–3.

    Article  CAS  PubMed  Google Scholar 

  21. Linares SN, Beltrame T, Ferraresi C, Galdino GAM, Catai AM. Photobiomodulation effect on local hemoglobin concentration assessed by near-infrared spectroscopy in humans. Lasers Med Sci. 2020;35(3):641–9.

    Article  PubMed  Google Scholar 

  22. Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep. 2016;6:30540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vanin AA, Verhagen E, Barboza SD, Costa LOP, Leal-Junior ECP. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci. 2018;33:181–214.

    Article  PubMed  Google Scholar 

  24. Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of V̇o2 kinetics: Mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43:2046–62.

    Article  PubMed  Google Scholar 

  25. Rossato M, Dellagrana RA, Lanferdini FJ, Sakugawa RL, Lazzari CD, Baroni BM, et al. Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue. Lasers Med Sci. 2016;31:1237–44.

    Article  PubMed  Google Scholar 

  26. Nampo FK, Cavalheri V, Dos Santos SF, de Paula RS, Camargo EA. Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers Med Sci. 2016;31:1957–70.

    Article  PubMed  Google Scholar 

  27. Leal-Junior ECP, Lopes-Martins RÁB, Bjordal JM. Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. Brazilian J Phys Ther. 2019;23(1):71–5.

    Article  Google Scholar 

  28. Ogita F, Hara M, Tabata I. Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand. 1996;157:435.

    Article  CAS  PubMed  Google Scholar 

  29. Volianitis S, Secher NH. Cardiovascular control during whole body exercise. J Appl Physiol. 2016;121(2):376–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sousa A, Borrani F, Rodríguez FA, Millet GP. Oxygen uptake kinetics is slower in swimming than arm cranking and cycling during heavy intensity. Front Physiol. 2017;8:639.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sidhu SK, Cresswell AG, Carroll TJ. Corticospinal responses to sustained locomotor exercises: moving beyond single-joint studies of central fatigue. Sport Med. 2013;43(6):437–49.

    Article  Google Scholar 

  32. De Almeida P, Lopes-Martins RÁB, De Marchi T, Tomazoni SS, Albertini R, Corrêa JCF, et al. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: What is better? Lasers Med Sci. 2012;27:453–8.

    Article  PubMed  Google Scholar 

  33. Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther. 2010;40:524–32.

  34. Leal Junior ECP, Lopes-Martins RÁB, Rossi RP, De Marchi T, Baroni BM, De Godoi V, et al. Effect of cluster multi-diode Light Emitting Diode Therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41:572–7.

    Article  PubMed  Google Scholar 

  35. Dellagrana RA, Rossato M, Orssatto LBR, Sakugawa RL, Baroni BM, Diefenthaeler F. Effect of photobiomodulation therapy in the 1500 m run: an analysis of performance and individual responsiveness. Photobiomodul Photomed Laser Surg. 2020;38:734–42.

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira Junior A, Kaspchak LAM, Bertuzzi R, Okuno NM. Effects of light-emitting diode irradiation on time to exhaustion at maximal aerobic speed. Lasers Med Sci. 2018;33:935–9.

    Article  PubMed  Google Scholar 

  37. Lanferdini FJ, Silva ES, Boeno FP, Sonda FC, Rosa RG, Quevedo R, et al. Effect of photobiomodulation therapy on performance and running economy in runners: A randomized double-blinded placebo-controlled trial. J Sports Sci. 2021;39:1348–55.

    Article  PubMed  Google Scholar 

  38. Dutra YM, Claus GM, Malta E de S, Seda DM de F, Zago AS, Campos EZ, et al. Photobiomodulation 30 min or 6 h Prior to Cycling Does Not Alter Resting Blood Flow Velocity, Exercise-Induced Physiological Responses or Time to Exhaustion in Healthy Men. Front Physiol. 2021;11:607302.

  39. Teixeira CL, Mezzaroba PV, Machado FA. Effect of photobiomodulation on critical swimming velocity: a randomized, crossover, double-blind, and placebo-controlled study. Int J Sports Physiol Perform. 2021;16:1035–42.

    Article  PubMed  Google Scholar 

  40. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7): e100097.

    Article  Google Scholar 

  41. Vieira LHP. Matlab code to extract figure values. 2021.

  42. Cohen J. Statistical power analysis for the behavioural sciences. 2nd ed. Hillsdale: Lawrence Earlbaum Assoc.; 1988.

    Google Scholar 

  43. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.

    Article  PubMed  Google Scholar 

  44. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    Article  PubMed  Google Scholar 

  45. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343: d4002.

    Article  PubMed  Google Scholar 

  47. Toma RL, Oliveira MX, Renno ACM, Laakso EL. Photobiomodulation (PBM) therapy at 904 nm mitigates effects of exercise-induced skeletal muscle fatigue in young women. Lasers Med Sci. 2018;33:1197–205.

    Article  PubMed  Google Scholar 

  48. Higashi RH, Toma RL, Tucci HT, Pedroni CR, Ferreira PD, Baldini GS, et al. Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed Laser Surg. 2013;31:586–94.

    Article  CAS  PubMed  Google Scholar 

  49. Dos Santos MT, Muñoz IS, Nicolau RA, Nogueira DV, Hauck LA, Osório RA, et al. Phototherapy effect on the muscular activity of regular physical activity practitioners. Lasers Med Sci. 2014;29:1145–52.

    Article  Google Scholar 

  50. Santos IAD, Lemos MP, Coelho VHM, Zagatto AM, Marocolo M, Soares RN, et al. Acute photobiomodulation does not influence specific high-intensity and intermittent performance in female futsal players. Int J Environ Res Public Health. 2020;17(19):7253.

    Article  PubMed Central  Google Scholar 

  51. Azuma RHE, Merlo JK, Jacinto JL, Borim JM, da Silva RA, Pacagnelli FL, Nunes JP, Ribeiro ASAA. Photobiomodulation therapy at 808 nm does not improve biceps brachii performance to exhaustion and delayed-onset muscle soreness in young adult women: a randomized, controlled. Crossover Trial Front Physiol. 2021;12: 664582.

    Article  PubMed  Google Scholar 

  52. Larkin-Kaiser KA, Borsa PA, Baweja HS, Moore MA, Tillman MD, George SZ, et al. Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner. Lasers Med Sci. 2016;31:1325–32.

    Article  PubMed  Google Scholar 

  53. Leal Junior ECP, Lopes-Martins RÁB, Baroni BM, De Marchi T, Taufer D, Manfro DS, et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci. 2009;24:857–63.

    Article  PubMed  Google Scholar 

  54. Lanferdini FJ, Bini RR, Baroni BM, Klein KD, Carpes FP, Vaz MA. Improvement of performance and reduction of fatigue with low-level laser therapy in competitive cyclists. Int J Sports Physiol Perform. 2018;13:14–22.

    Article  PubMed  Google Scholar 

  55. Dellagrana RA, Rossato M, Sakugawa RL, Baroni BM, Diefenthaeler F. Photobiomodulation therapy on physiological and performance parameters during running tests: dose-response effects. J Strength Cond Res. 2018;32:2807–15.

    Article  PubMed  Google Scholar 

  56. Miranda EF, Vanin AA, Tomazoni SS, Dos Santos Grandinetti V, De Paiva PRV, Dos Santos Monteiro Machado C, et al. Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train. 2016;51:129–35.

  57. Stamborowski SF, de Oliveira Spinelli BM, Lima FPS, Costa DR, de Silveira Souza GA, Lima MO, et al. The influence of photobiomodulation on the temperature of the brachial biceps during muscle fatigue protocol. Lasers Med Sci. 2021;36:1741–9.

    Article  PubMed  Google Scholar 

  58. Mezzaroba PV, Pessôa Filho DM, Zagatto AM, Machado FA. LED session prior incremental step test enhance VO2max in running. Lasers Med Sci. 2018;33:1263–70.

    Article  PubMed  Google Scholar 

  59. Rossato M, Dellagrana RA, Sakugawa RL, Baroni BM, Diefenthaeler F. Dose-response effect of photobiomodulation therapy on muscle performance and fatigue during a multiple-set knee extension exercise: a randomized, crossover, double-blind placebo-controlled trial. Photobiomodul Photomed Laser Surg. 2020;38(12):758–65.

    Article  CAS  PubMed  Google Scholar 

  60. Baroni BM, Leal Junior ECP, Geremia JM, Diefenthaeler F, Vaz MA. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg. 2010;28:653–8.

    Article  PubMed  Google Scholar 

  61. Rossato M, Dellagrana RA, Sakugawa RL, Lazzari CD, Baroni BM, Diefenthaeler F. Time response of photobiomodulation therapy on muscular fatigue in humans. J strength Cond Res. 2018;32:3285–93.

    Article  PubMed  Google Scholar 

  62. Molina Correa JC, Padoin S, Varoni PR, Demarchi MC, Flores LJF, Nampo FK, et al. Ergogenic effects of photobiomodulation on performance in the 30-second wingate test: a randomized, double-blind, placebo-controlled, crossover study. J strength Cond Res. 2020;36:1901–8.

    Article  PubMed  Google Scholar 

  63. Segabinazi Peserico C, Garozi L, Zagatto AM, Machado FA. Does previous application of photobiomodulation using light-emitting diodes at different energy doses modify the peak running velocity and physiological parameters? A randomized, crossover, double-blind, and placebo-controlled study. Photobiomodul Photomed Laser Surg. 2020;38:727–33.

    Article  CAS  PubMed  Google Scholar 

  64. Horowitz JF, Sidossis LS, Coyle EF. High efficiency of type I muscle fibers improves performance. Int J Sports Med. 1994;15:152–7.

    Article  CAS  PubMed  Google Scholar 

  65. Colliander EB, Dudley GA, Tesch PA. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions. Eur J Appl Physiol Occup Physiol. 1988;58(1–2):81–6.

    Article  CAS  PubMed  Google Scholar 

  66. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):502–16.

    Article  Google Scholar 

  67. Zein R, Selting W, Hamblin MR. Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt. 2018;23(12):1–17.

    Article  PubMed  Google Scholar 

  68. Ferraresi C, Hamblin MR, Parizotto NA. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med. 2012;1:267–86.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Krustrup P, Söderlund K, Mohr M, Bangsbo J. The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment. Pflugers Arch. 2004;447:855–66.

    Article  CAS  PubMed  Google Scholar 

  70. Adam A, De Luca CJ. Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions. J Appl Physiol. 2005;99:268–80.

    Article  PubMed  Google Scholar 

  71. Enoka RM. Morphological features and activation patterns of motor units. J Clin Neurophysiol. 1995;12(6):538–59.

    Article  CAS  PubMed  Google Scholar 

  72. Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol. 1999;87:1326–32.

    Article  PubMed  Google Scholar 

  73. Ross A, Leveritt M, Riek S. Neural influences on sprint running training adaptations and acute responses. Sport Med. 2001;31:409–25.

    Article  CAS  Google Scholar 

  74. Beneke R, Pollmann C, Bleif I, Leithäuser RM, Hütler H. How anaerobic is the wingate anaerobic test for humans? Eur J Appl Physiol. 2002;87:388–92.

    Article  CAS  PubMed  Google Scholar 

  75. Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I. Sport Med. 2011;41:673–94.

    Article  Google Scholar 

  76. Haider G, Folland JP. Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med Sci Sports Exerc. 2014;46:2234–43.

    Article  CAS  PubMed  Google Scholar 

  77. Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109:135–48.

    Article  CAS  PubMed  Google Scholar 

  78. Smith JC, Hill DW. Contribution of energy systems during a Wingate power test. Br J Sports Med. 1991;25:196–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Glenn JM, Gray M, Jensen A, Stone MS, Vincenzo JL. Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. Eur J Sport Sci. 2016;16:1095–103.

    Article  PubMed  Google Scholar 

  80. Domínguez R, Garnacho-Castaño MV, Cuenca E, García-Fernández P, Muñoz-González A, de Jesús F, et al. Effects of beetroot juice supplementation on a 30-s high-intensity inertial cycle ergometer test. Nutrients. 2017;9(12):1360.

    Article  PubMed Central  Google Scholar 

  81. Jardine MA, Wiggins TM, Myburgh KH, Noakes TD. Physiological characteristics of rugby players including muscle glycogen content and muscle fibre composition. South African Med J. 1988;73:529–32.

    CAS  Google Scholar 

  82. Prince FP, Hikida RS, Hagerman FC. Muscle fiber types in women athletes and non-athletes. Pflügers Arch. 1977;371(1–2):161–5.

    Article  CAS  PubMed  Google Scholar 

  83. Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff RL. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans. Am J Physiol. 1996;271:38–43.

    Google Scholar 

  84. Husmann F, Mittlmeier T, Bruhn S, Zschorlich V, Behrens M. Impact of blood flow restriction exercise on muscle fatigue development and recovery. Med Sci Sports Exerc. 2018;50:436–46.

    Article  PubMed  Google Scholar 

  85. Thomson JA, Green HJ, Houston ME. Muscle glycogen depletion patterns in fast twitch fibre subgroups of man during submaximal and supramaximal exercise. Pflügers Arch. 1979;379(1):105–8.

    Article  CAS  PubMed  Google Scholar 

  86. Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vollestad NK, Blom C. Effect of varying intensity on glyocgen depletion in human muscle fibres. Acta Physiol Scand. 1985;125:395–405.

    Article  CAS  PubMed  Google Scholar 

  88. Yoon BK, Kravits L, Robergrs R. VO2max, protocol duration, and the VO2 plateau. Med Sci Sport Exerc. 2007;39:1186–92.

    Article  Google Scholar 

  89. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol. 1983;55:1558–64.

    Article  CAS  PubMed  Google Scholar 

  90. Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991;23(1):93–107.

    Article  CAS  PubMed  Google Scholar 

  91. Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-Analysis. Br J Sports Med. 2017;51:658–69.

    Article  PubMed  Google Scholar 

  92. Hobson RM, Saunders B, Ball G, Harris RC, Sale C. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012;43:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saunders B, de Oliveira LF, da Silva RP, de Salles PV, Gonçalves LS, Yamaguchi G, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sport. 2017;27(11):1240–7.

    Article  CAS  Google Scholar 

  94. Wang Y, Marshall KL, Baba Y, Lumpkin EA, Gerling GJ. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate. PLoS ONE. 2015;10(3): e0120897.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Oltulu P, Ince B, Kökbudak N, Findik S, Kiliç F. Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique. Turk J Plast Surg. 2018;26:56–61.

    Article  Google Scholar 

  96. Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electro Res. 2007;32(1–2):81–6.

    Article  Google Scholar 

  97. Nakano J, Kataoka H, Sakamoto J, Origuchi T, Okita M, Yoshimura T. Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats. Exp Physiol. 2009;94:1005–15.

    Article  CAS  PubMed  Google Scholar 

  98. Gavish L, Hoffer O, Rabin N, Halak M, Shkilevich S, Shayovitz Y, et al. Microcirculatory response to photobiomodulation—why some respond and others do not: a randomized controlled study. Lasers Surg Med. 2020;52:863–72.

    Article  PubMed  Google Scholar 

  99. Hu D, van Zeyl M, Valter K, Potas JR. Sex, but not skin tone affects penetration of red-light (660 nm) through sites susceptible to sports injury in lean live and cadaveric tissues. J Biophotonics. 2019;12(7): e201900010.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro M. Zagatto.

Ethics declarations

Funding

Yago Medeiros Dutra was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Elvis de Souza Malta was supported by São Paulo Research Foundation (FAPESP) Fellowship #2017/21724-8. Alessandro Zagatto received grants from CNPq Process 307719/2016-2.

Conflict of interest/competing interest

Yago Medeiros Dutra, Elvis de Souza Malta, Amanda Soler Elias, James R Broatch and Alessandro Moura Zagatto declare they have no conflicts of interest relevant to the contents of this review.

Author contributions

YMD, ESM, ASE and AMZ contributed to the study conception, design, material preparation, data collection and analysis. YMD, ESM, JRB and AMZ contributed to data interpretation and manuscript writing. All authors read and approved the final manuscript.

Data availability

All data generated and/or analysed during this study are included in this published article (and its electronic supplementary information files).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, Y.M., Malta, E.S., Elias, A.S. et al. Deconstructing the Ergogenic Effects of Photobiomodulation: A Systematic Review and Meta-analysis of its Efficacy in Improving Mode-Specific Exercise Performance in Humans. Sports Med 52, 2733–2757 (2022). https://doi.org/10.1007/s40279-022-01714-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01714-y

Navigation