Skip to main content
Log in

Techno-economic analysis of methanol and ammonia co-producing process using CO2 from blast furnace gas

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In steel manufacturing plants, blast furnace gas is generated from a furnace in which steel ore, coke and limestone are heated and melted. It is commonly used to produce electricity or released to the atmosphere in general; however, it can be utilized as a carbon source to produce C1 value-added chemicals. In this study, we propose two production schemes for methanol production and co-production of methanol and ammonia from blast furnace gas. Both cases were simulated using Aspen Plus V12 and economics was evaluated using Aspen Process Economic Analyzer (APEA). As a result, the methanol production case produced 99.4 wt% 232 t/day of methanol and the co-production case produced 97.7 wt%, 453.4 t/day of ammonia and 99.8 wt%, 263 t/day of methanol. The total annual cost of the methanol production case is US 121.6 M$/y and US 222.1 M$/y at the co-production case. The NPVs are −810.4 M$ in the methanol production case and −981.3 M$ in the co-production case, respectively. By sensitivity analysis, it is shown that the co-production case can be more economically feasible in the aspect of NPV when the raw material cost decreases 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IEA:

international energy agency

COG:

coke oven gas

BOFG:

basic oxygen furnace gas

BFG:

blast furnace gas

CCS:

carbon capture & storage

CCU:

carbon capture & utilization

LHV:

lower heating value

DME:

dimethyl ether

SMR:

steam methane reforming

CAGR:

compound annual growth rate

PFD:

process flow diagram

PSA:

pressure swing adsorption

TAC:

total annual cost

TACC:

total annual capital cost

TOC:

total operating cost

NPV:

net present value

HEN:

heat exchanger network

AEA:

aspen energy analyzer

APEA:

aspen process economic analyzer

FCI:

fixed capital investment

CRF:

capital recovery factor

CAPEX:

capital expenditure

OPEX:

operating expenditure

wt:

weight

References

  1. IEA, Global Energy & CO2 Status Report 2019, IEA, Paris (2019).

  2. D. C. Rosenfeld and M. Lehner, Renew. Energy, 147, 1511 (2020).

    Article  CAS  Google Scholar 

  3. W. Liu and F. Yang, Int. J. Hydrog. Energy, 46, 10548 (2021).

    Article  CAS  Google Scholar 

  4. P. Cavaliere, Clean ironmaking and steelmaking processes, Springer, Lecce, Italy (2019).

    Book  Google Scholar 

  5. K. Jiang, P. Ashworth and D. Angus, Renew. Sust. Energ. Rev., 119, 109601 (2020).

    Article  Google Scholar 

  6. G. Leonzio, J. CO2 Util., 27, 326 (2018).

    Article  CAS  Google Scholar 

  7. A. H. Tamboli and H. Kim, Chem. Eng. J., 323, 530 (2017).

    Article  CAS  Google Scholar 

  8. J. Artz and W. Leitner, Chem. Rev., 118, 434 (2018).

    Article  CAS  Google Scholar 

  9. R. M. Cuéllar-Franca and A. Azapagic, J. CO2 Util., 9, 82 (2015).

    Article  Google Scholar 

  10. J. K. Lee, I. B. Lee and J. Han, J. Ind. Eng. Chem., 75, 77 (2019).

    Article  CAS  Google Scholar 

  11. W. H. Chen and S. W. Du, Energy, 86, 758 (2015).

    Article  CAS  Google Scholar 

  12. W. U. Soto and L. Falk, Renew. Sustain. Energy Rev., 74, 809 (2017).

    Article  Google Scholar 

  13. W. Zheng and W. Zeng, Fuel, 302, 121100 (2021).

    Article  CAS  Google Scholar 

  14. GlobeNewswire, https://www.globenewswire.com/news-release/2021/06/25/2253193/28124/en/Global-Methanol-Market-2021-to-2026-Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts.html (2021).

  15. Methanol institute, https://www.methanol.org/methanol-price-supply-demand/ (2021).

  16. B. Lee and H. Lim, Appl. Energy, 279, 115827 (2020).

    Article  CAS  Google Scholar 

  17. M. P. Fortes and E. Tzimas, Appl. Energy, 161, 718 (2016).

    Article  Google Scholar 

  18. S. Shin and I. B. Lee, Energy, 200, 117506 (2020).

    Article  CAS  Google Scholar 

  19. N. Meunier and G. D. Weireld, Renew. Energy, 146, 1192 (2020).

    Article  CAS  Google Scholar 

  20. J. M. Bermúdez and J. A. Menéndez, Fuel, 89, 2897 (2010).

    Article  Google Scholar 

  21. D. Kim and J. Han, Energy, 198, 117355 (2020).

    Article  CAS  Google Scholar 

  22. U.S. Geological Survey, Mineral Commodity Summaries 2019, Reston, VA, USA (2019).

  23. Grand View Research, https://www.grandviewresearch.com/industry-analysis/ammonia-market (2017).

  24. O. Osman and A. Sleptchenko, J. Clean. Prod., 271, 121627 (2020).

    Article  CAS  Google Scholar 

  25. E. Koohestanian and A. Samimi, Energy, 144, 279 (2018).

    Article  CAS  Google Scholar 

  26. N. D. Pawar and D. Stolten, Int. J. Hydrog. Energy, 46, 27247 (2021).

    Article  CAS  Google Scholar 

  27. ApenTech® https://lms.nchu.edu.tw/sysdata/doc/1/196bb4d4fac4c3d7/pdf.pdf (2018).

  28. H. A. Kalbani and H. Wang, Appl. Energy, 165, 809 (2016).

    Google Scholar 

  29. M. Matzen and Y. Demirel, Energy, 93, 1 (2015).

    Article  Google Scholar 

  30. A. Alarifi and E. Croiset, Ind. Eng. Chem. Res., 55, 1164 (2016).

    Article  CAS  Google Scholar 

  31. G. H. Graaf, E. J. Stamhuis and A. A. C. M. Beenackers, Chem. Eng. Sci., 43, 3185 (1988).

    Article  CAS  Google Scholar 

  32. J. Nyári and A. S. Aarnio, J. CO2 Util., 39, 101106 (2020).

    Article  Google Scholar 

  33. P. L. Spath and D. C. Dayton, NREL, Golden (CO, USA) (2003).

  34. Encyclopedia Britannica, https://www.britannica.com/technology/Haber-Bosch-process (2020).

  35. L. J. Christiansen, Ammonia: Catalysis and manufacture, Springer-Verlag, Lyngby, Denmark (1995).

    Google Scholar 

  36. Y. I. Lim, J. Choi, H. M. Moon and G. Kim, Korean Chem. Eng. Res., 54, 3 (2016).

    Google Scholar 

  37. D. M. Ruthven, S. Farooq and K. S. Knaebel, Pressure swing adsorption, Wiley, New York, USA (1994).

    Google Scholar 

  38. C. Zhang and S. C. Kang, Fuel, 157, 285 (2015).

    Article  CAS  Google Scholar 

  39. M. S. Peters, K. Timmerhaus and R. West, Plant design and economics for chemical engineers, McGraw-Hill Professional, New York, USA (2002).

    Google Scholar 

  40. R. A. Turton, Analysis, synthesis, and design of chemical processes, Prentice Hall, Hoboken, New Jersey, USA (2003).

    Google Scholar 

  41. Chemical engineering, https://www.chemengonline.com (2021).

  42. W. D. Seider and J. D. Seader, Product and process design principles, Wiley, New York, USA (2010).

    Google Scholar 

  43. The Engineering ToolBox, https://www.engineeringtoolbox.com/fuels-higher-caloriflc-values-d_169.html (2021).

  44. METGroup, https://group.met.com/en/media/energy-insight/calorific-value-of-natural-gas (2021).

  45. A. Ebrahimi and M. Ziabasharhagh, Energy, 126, 868 (2017).

    Article  CAS  Google Scholar 

  46. F. P. Alege and P. M. Ndegwa, J. Clean. Prod., 310, 127481 (2021).

    Article  Google Scholar 

  47. D. Bellotti and L. Magistri, Energy Procedia, 158, 4721 (2019).

    Article  CAS  Google Scholar 

  48. G. Schnitkey, Weekly Farm Economics. 178 (2018).

  49. J. M. Douglas, Conceptual design of chemical processes, McGraw-Hill New York, USA (1988).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1F1A106339712). Also, this result was supported by Regional Innovation Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021RIS-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hwi Jeong.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Jeong, D.H. Techno-economic analysis of methanol and ammonia co-producing process using CO2 from blast furnace gas. Korean J. Chem. Eng. 39, 1999–2009 (2022). https://doi.org/10.1007/s11814-022-1129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1129-9

Keywords

Navigation