Skip to main content
Log in

Formation of ZrTiO4 under Hydrothermal Conditions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—The formation of nanocrystals in the ZrO2–TiO2–H2O system during isothermal (240°C) treatment of coprecipitated hydroxides under hydrothermal conditions has been studied. The formation of solid solutions based on monoclinic ZrO2, anatase (TiO2), and a high-temperature disordered phase of variable composition ZrxTi(1 – x)O4 with a scrutinyite (α-PbO2) structure has been demonstrated. The average size of ZrxTi(1 – x)O4 crystallites is 16 ± 2 nm. The kinetic features of phase formation in the ZrO2–TiO2–H2O system have been studied. It has been shown that the phase of variable composition ZrxTi(1 – x)O4 is metastable and, with increasing hydrothermal treatment duration, decomposes into solid solutions based on monoclinic ZrO2 and anatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. Kumar and G. Irfan, Mater. Today Proc. 38, 2649 (2020). https://doi.org/10.1016/j.matpr.2020.08.240

    Article  CAS  Google Scholar 

  2. B. M. Reddy and A. Khan, Catal. Rev. Sci. Eng. 47, 257 (2005). https://doi.org/10.1081/CR-200057488

    Article  CAS  Google Scholar 

  3. E. Salahinejad, M. J. Hadianfard, D. D. Macdonald, et al., J. Biomed. Nanotechnol. 9, 1327 (2013). https://doi.org/10.1166/jbn.2013.1619

    Article  CAS  PubMed  Google Scholar 

  4. C. Liu, X. Li, C. Xu, et al., Ceram. Int. 46, 20943 (2020). https://doi.org/10.1016/j.ceramint.2020.05.152

    Article  CAS  Google Scholar 

  5. A. Zaleska, Recent Patents Eng. 2, 157 (2008). https://doi.org/10.2174/187221208786306289

    Article  CAS  Google Scholar 

  6. R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res. 52, 3581 (2013). https://doi.org/10.1021/ie303468t

    Article  CAS  Google Scholar 

  7. J. Chevalier and L. Gremillard, J. Eur. Ceram. Soc. 29, 1245 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.025

    Article  CAS  Google Scholar 

  8. V. A. Lebedev, D. A. Kozlov, I. V. Kolesnik, et al., Appl. Catal. B: Environ. 195, 39 (2016). https://doi.org/10.1016/j.apcatb.2016.05.010

    Article  CAS  Google Scholar 

  9. Y. Yang, Y.-Hang Cui, L. Miao, et al., Powder Technol. 338, 304 (2018). https://doi.org/10.1016/j.powtec.2018.07.038

    Article  CAS  Google Scholar 

  10. M. Mozafari, E. Salahinejad, V. Shabafrooz, et al., Int. J. Nanomed. 8, 1665 (2013). https://doi.org/10.2147/IJN.S42659

    Article  CAS  Google Scholar 

  11. D. N. Grishchenko, A. V. Golub, V. G. Kuryavyi, et al., Russ. J. Inorg. Chem. 66, 1592 (2021). https://doi.org/10.1134/S0036023621100065

    Article  CAS  Google Scholar 

  12. A. V. Zdravkov, Y. S. Kudryashova, and R. S. Abiev, Russ. J. Gen. Chem. 90, 1677 (2020). https://doi.org/10.1134/S1070363220090145

    Article  CAS  Google Scholar 

  13. R. E. Newnham, J. Am. Ceram. Soc. 50, 216 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15085.x

    Article  CAS  Google Scholar 

  14. E. L. Sham, M. A. G. Aranda, E. M. Farfan-Torres, et al., J. Solid State Chem. 139, 225 (1998). https://doi.org/10.1006/jssc.1998.7833

    Article  CAS  Google Scholar 

  15. F. H. Brown and P. Duwez, J. Am. Ceram. Soc. 37, 129 (1954).

    Article  CAS  Google Scholar 

  16. W. Coughanour, R. S. Roth, and V. A. Deprosse, J. Res. Natl. Bur. Stand 52, 37 (1954).

    Article  CAS  Google Scholar 

  17. A. E. McHale and R. S. Roth, J. Am. Ceram. Soc. 69, 827 (1986).

    Article  CAS  Google Scholar 

  18. P. Bordet, A. McHale, A. Santoro, et al., J. Solid State Chem. 64, 30 (1986). https://doi.org/10.1016/0022-4596(86)90119-2

    Article  CAS  Google Scholar 

  19. U. Troitzsch, A. G. Christy, and D. J. Ellis, J. Am. Ceram. Soc. 87, 2058 (2005). https://doi.org/10.1111/j.1151-2916.2004.tb06360.x

    Article  Google Scholar 

  20. N. Vittayakorn, J. Ceram. Process. Res 7, 288 (2006).

    Google Scholar 

  21. F. Azough, R. Freer, C. L. Wang, et al., J. Mater. Sci. 31, 2539 (1996). https://doi.org/10.1007/BF00687279

    Article  CAS  Google Scholar 

  22. S. V. Pol, V. G. Pol, A. Gedanken, et al., J. Phys. Chem. 111, 2484. https://doi.org/10.1007/BF00687279

  23. U. Troitzsch and D. J. Ellis, J. Mater. Sci. 40, 4571 (2005). https://doi.org/10.1007/s10853-005-1116-7

    Article  CAS  Google Scholar 

  24. U. Troitzsch, A. G. Christy, and D. J. Ellis, Phys. Chem. Miner. 32, 504 (2005). https://doi.org/10.1007/s00269-005-0027-0

    Article  CAS  Google Scholar 

  25. R. Christoffersen and P. K. Davies, J. Am. Ceram. Soc. 75, 563 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07843.x

    Article  CAS  Google Scholar 

  26. L. M. Oanh, D. B. Do, N. M. Hung, et al., J. Electron. Mater. 45, 2553 (2016). https://doi.org/10.1007/s11664-016-4412-x

    Article  CAS  Google Scholar 

  27. A.K. Bachina, O.V. Al’myasheva, D.P. Danilovich, et al., Russ. J. Phys. Chem. 95, 1529 (2021). https://doi.org/10.1134/S0036024421080057

    Article  CAS  Google Scholar 

  28. U. Troitzsch, A. G. Christy, and D. J. Ellis, J. Solid State Chem. 180, 2885 (2007). https://doi.org/10.1016/j.jssc.2007.08.020

    Article  CAS  Google Scholar 

  29. A. Gajovic, A. Santic, I. Djerdj, et al., J. Alloys Compd. 479, 525 (2009).

    Article  CAS  Google Scholar 

  30. E. López-López, C. Baudín, R. Moreno, et al., J. Eur. Ceram. Soc. 32, 299 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.004

    Article  CAS  Google Scholar 

  31. K. Byrappa and T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.04.001

    Article  CAS  Google Scholar 

  32. Yu. V. Kolen’ko, A. A. Burukhin, B. R. Churagulov, et al., Zh. Neorg. Khim. 47, 1755 (2002).

    Google Scholar 

  33. O. V. Almjasheva, Nanosyst. Phys., Chem. Math. 7, 1031 (2016). https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049

    Article  CAS  Google Scholar 

  34. R. P. Denkewicz, K. S. TenHuisen, and J. H. Adair, J. Mater. Res. 5, 2698 (1990). https://doi.org/10.1557/JMR.1990.2698

    Article  CAS  Google Scholar 

  35. F. Yu. Sharikov, O. V. Almjasheva, and V. V. Gusarov, Russ. J. Inorg. Chem. 51, 1538 (2006). https://doi.org/10.1134/S0036023606100044

    Article  Google Scholar 

  36. O. V. Pozhidaeva, E. N. Korytkova, D. P. Romanov, et al., Zh. Obshch. Khim. 72, 910 (2002).

    Google Scholar 

  37. A. V. Shevchenko, L. M. Lopato, I. M. Maister, et al., Zh. Neorg. Khim. 25, 1379 (1980).

    Google Scholar 

  38. H. Nishizawa and Y. Aoki, J. Solid State Chem. 56, 158 (1985). https://doi.org/10.1016/0022-4596(85)90052-0

    Article  CAS  Google Scholar 

  39. Yu. I. Sukharev, V. V. Avdin, A. A. Lymar, et al., J. Struct. Chem. 47, 151 (2006). https://doi.org/10.1007/s10947-006-0280-1

    Article  CAS  Google Scholar 

  40. M. Z. C. Hu, J. T. Zielke, J. S. Lin, et al., J. Mater. Res. 14, 103 (1999). https://doi.org/10.1557/JMR.1999.0017

    Article  CAS  Google Scholar 

  41. A. K. Bachina, O. V. Almjasheva, V. I. Popkov, et al., J. Cryst. Growth 576, 126371 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126371

    Article  CAS  Google Scholar 

  42. A. Vasilevskaya, O. V. Almjasheva, and V. V. Gusarov, J. Nanoparticle Res. 18 (2016). https://doi.org/10.1007/s11051-016-3494-y

Download references

ACKNOWLEDGMENTS

We are grateful to Corresponding Member of the RAS V.V. Gusarov for the proposed direction for research, attention to the work, and fruitful discussion of the results. We also thank V.I. Al’myashev for help in the study of materials by X-ray electron probe microanalysis.

Funding

The work was supported by the Russian Science Foundation, project no. 21-13-00260.

Author information

Authors and Affiliations

Authors

Contributions

A.K. Bachina and O.V. Almjasheva invented and developed the experiment; A.K. Bachina and V.I. Popkov synthesized the samples and carried out their physicochemical analysis; A.K. Bachina and O.V. Almjasheva participated in data processing. All authors participated in the discussion of the results and writing the text of the article.

Corresponding author

Correspondence to A. K. Bachina.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachina, A.K., Almjasheva, O.V. & Popkov, V.I. Formation of ZrTiO4 under Hydrothermal Conditions. Russ. J. Inorg. Chem. 67, 830–838 (2022). https://doi.org/10.1134/S003602362206002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362206002X

Keywords:

Navigation