Skip to main content
Log in

Formation of Arrays of 1D Copper(II) Oxide Nanocrystals on the Nickel Surface upon Its Galvanic Replacement in a CuCl2 Solution and Their Electrocatalytic Properties in the Hydrogen Evolution Reaction during Water Splitting in an Alkaline Medium

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Hydrolysis and subsequent heat treatment of compounds formed on the surface of nickel during its galvanic substitution in a 1 M CuCl2 solution results in the formation of arrays of nanosized copper(II) oxide particles with the morphology of nanorods 10–15 nm in diameter and up to 500 nm in length. It has been noted that some of these nanoparticles are incorporated in microwalls, which form open microcapsules 10–30 µm in size on the nickel surface. The resulting samples exhibit electrocatalytic activity in the reaction of water splitting during electrolysis in an alkaline medium and are characterized by an overpotencial of 185 mV in the hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Rajput, A. Kundu, and B. Chakraborty, ChemElectro-Chem 8, 1698 (2021). https://doi.org/10.1002/celc.202100307

    Article  CAS  Google Scholar 

  2. W. Stepniowski and W. Misiolek, Nanomaterials 8, 379 (2018). https://doi.org/10.3390/nano8060379

    Article  CAS  PubMed Central  Google Scholar 

  3. G. Filipič and U. Cvelbar, Nanotecnology 23, 194001 (2012). https://doi.org/10.1088/0957-4484/23/19/194001

  4. G. Fritz-Popovski, F. Sosada-Ludwikowska, A. Köck, et al., Sci. Rep. 9, 807 (2019). https://doi.org/10.1038/s41598-018-37172-8

  5. S. Gong, X. Wu, J. Zhang, et al., CrystEngComm 20, 3096 (2018). https://doi.org/10.1039/C8CE00203G

    Article  CAS  Google Scholar 

  6. S. Ding, Y. Tian, J. Jiu, et al., RSC Adv 8, 2109 (2018). https://doi.org/10.1039/C7RA12738C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Zhou, Y. He, C. Jia, et al., Nanomaterials 7, 273 (2017). https://doi.org/10.3390/nano7090273

    Article  CAS  PubMed Central  Google Scholar 

  8. G. He and L. Wang, Ionics 24, 3167 (2018). https://doi.org/10.1007/s11581-018-2513-7

    Article  CAS  Google Scholar 

  9. A. Li, H. Song, W. Wan, et al., Electrochim. Acta 132, 42 (2014). https://doi.org/10.1016/j.electacta.2014.03.123

    Article  CAS  Google Scholar 

  10. C. Lu, J. Wang, S. Czioska, et al., J. Phys. Chem. C. 121, 25875 (2017). https://doi.org/10.1021/acs.jpcc.7b08365

  11. L. Nkhaili, A. Narjis, A. Agdad, et al., Adv. Condens. Matter Phys. 2020, 5470817 (2020). https://doi.org/10.1155/2020/5470817

    Article  CAS  Google Scholar 

  12. P. Das, M. K. Rajbhar, R. G. Elliman, et al., Nanotecnology 30, 365304 (2019). https://doi.org/10.1088/1361-6528/ab2018

    Article  CAS  Google Scholar 

  13. Y. Liu, Z. Jin, X. Tian, et al., Electrochim. Acta 318, 695 (2019). https://doi.org/10.1016/j.electacta.2019.06.067

    Article  CAS  Google Scholar 

  14. Y. Lv, B. Shi, X. Su, et al., Mater. Lett. 212, 122 (2018). https://doi.org/10.1016/j.matlet.2017.09.120

    Article  CAS  Google Scholar 

  15. A. M. Abd-Elnaiem, M. A. Abdel-Rahim, A. Y. Abdel-Latief, et al., Materials 14, 5030 (2021). https://doi.org/10.3390/ma14175030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. W. Yuan, Y. Wu, X. Wang, et al., J. Nanoparticle Res. 22, 125 (2020). https://doi.org/10.1007/s11051-020-04859-x

    Article  CAS  Google Scholar 

  17. S. Anantharaj, H. Sugime, B. Chen, et al., Electrochim. Acta 364, 137170 (2020). https://doi.org/10.1016/j.electacta.2020.137170

    Article  CAS  Google Scholar 

  18. X. He, R. He, Q. Lan, et al., J. Nanomater. 2016, 2127980 (2016). https://doi.org/10.1155/2016/2127980

    Article  CAS  Google Scholar 

  19. A. Jafari, S. Terohid, A. Kokabi, et al., J. Chem. Res. 44, 471 (2020). https://doi.org/10.1177/1747519819899068

    Article  CAS  Google Scholar 

  20. J. Sun, Y. Jia, Y. Jing, et al., Russ. J. Inorg. Chem 53, 36 (2008). https://doi.org/10.1134/S0036023608010063

    Article  Google Scholar 

  21. Z. Yin and F. Chen, J. Power Sources 265, 273 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.123

    Article  CAS  Google Scholar 

  22. L. Yuan, C. Gao, C. Zeng, et al., Nano 12, 1750125 (2017). https://doi.org/10.1142/S1793292017501259

  23. N. E. Brese, M. O' Keeffe, B. L. Ramakrishna, et al., J. Solid State Chem. 89, 184 (1990). https://doi.org/10.1016/0022-4596(90)90310-T

    Article  CAS  Google Scholar 

  24. Y. Cudennec, A. Riou, Y. GeHrault, et al., J. Solid State Chem. 151, 308 (2000). https://doi.org/10.1006/jssc.2000.8659

    Article  CAS  Google Scholar 

  25. W. Ho, Q. Tay, H. Qi, et al., Molecules 22, 677 (2017). https://doi.org/10.3390/molecules22040677

    Article  CAS  PubMed Central  Google Scholar 

  26. S. N. Narang, V. B. Kartha, and N. D. Pate, Physica A, 8, 204 (1992).

  27. P. Jansanthea, C. Saovakon, W. Chomkitichai, et al., Russ. J. Inorg. Chem. 66, 667 (2021). https://doi.org/10.1134/S0036023621050089

    Article  CAS  Google Scholar 

  28. P. Plumelle, D. N. Talwar, and M. Vandevyver, Phys. Rev. B 20, 4199 (1979). https://doi.org/10.1103/PhysRevB.20.4199

    Article  CAS  Google Scholar 

  29. A. A. Krasilin and V. V. Gusarov, Nanosystems: Phys. Chem. Math. 8, 620 (2017). https://doi.org/10.17586/2220-8054-2017-8-5-620-627

    Article  CAS  Google Scholar 

  30. A. A. Krasilin and V. V. Gusarov, Russ. J. Gen. Chem 85, 2238 (2015). https://doi.org/10.1134/S1070363215100047

    Article  CAS  Google Scholar 

  31. L. B. Gulina, V. P. Tolstoy, A. A. Solovev, et al., Prog. Nat. Sci.: Mater. Int. 30, 279 (2020). https://doi.org/10.1016/j.pnsc.2020.05.001

    Article  CAS  Google Scholar 

  32. L. B. Gulina, V. P. Tolstoy, and I. A. Kasatkin, J. Fluorine Chem. 180, 117 (2015). https://doi.org/10.1016/j.jfluchem.2015.09.002

    Article  CAS  Google Scholar 

  33. V. P. Tolstoi and L. B. Gulina, Russ. J. Gen. Chem. 83, 1635 (2013). https://doi.org/10.1134/S1070363213090016

    Article  CAS  Google Scholar 

  34. D. S. Dmitriev, K. D. Martinson, and V. I. Popkov, Mater. Lett. 305, 130808 (2021). https://doi.org/10.1016/j.matlet.2021.130808

    Article  CAS  Google Scholar 

  35. N. Lotfi, T. S. Farahani, Y. Yaghoubinezhad, et al., Int. J. Hydrogen Energy 44, 13296 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.208

    Article  CAS  Google Scholar 

  36. N. Lotfi, T. Shahrabi, Y. Yaghoubinezhad, et al., J. Electroanal. Chem. 848, 113350 (2019). https://doi.org/10.1016/j.jelechem.2019.113350

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the “Nanotechnologies” Resource Center of St. Petersburg State University for the study of experimental samples.

Funding

The work was supported by the Russian Science Foundation (project no. 18-19-00370-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Tolstoy.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batishcheva, E.V., Tolstoy, V.P. Formation of Arrays of 1D Copper(II) Oxide Nanocrystals on the Nickel Surface upon Its Galvanic Replacement in a CuCl2 Solution and Their Electrocatalytic Properties in the Hydrogen Evolution Reaction during Water Splitting in an Alkaline Medium. Russ. J. Inorg. Chem. 67, 898–903 (2022). https://doi.org/10.1134/S0036023622060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060055

Keywords:

Navigation