Skip to main content
Log in

Degradation Behavior of MgO Refractory by BOF Slags Containing Calcium Chloride

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to clarify the degradation behavior of MgO refractory by BOF slags containing CaCl2, some laboratory experiments were carried out at steelmaking temperature to simulate the interaction between the refractory and slags. Three slag systems (viz. CaCl2-free, CaCl2-added and CaF2-added slags) were considered in this study. It is found that a solid solution magnesiowustite (MW) layer can be observed at the boundary between the refractory and the slags, and its thickness increases with time. In the MW layer, MgO diffuses to the slag, while FeO diffuses oppositely to the refractory. The dissolution of MgO refractory into the CaCl2-added slags reduces the solubility of CaCl2 in the slags, and causes a CaCl2 layer precipitated near the MW layer. The CaCl2 layer acts as a barrier to hinder the diffusion of MgO and FeO, thus leading to a thinner MW layer and a lower MgO content in the slags in contrast to the CaCl2-free slag. In the case of the CaF2-added slag, the thickest MW layer and the highest MgO content are obtained. So, the addition of CaCl2 into BOF slag would weaken the degradation of MgO refractory, while the addition of CaF2 plays an opposite role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Park, K. Lee, J. Pak, and Y. Chung: ISIJ Int., 2014, vol. 54(9), pp. 2059–63.

    Article  CAS  Google Scholar 

  2. Y. Chen, G.A. Brooks, and S.A. Nightingale: Can. Metall. Quart., 2005, vol. 44(3), pp. 323–30.

    Article  CAS  Google Scholar 

  3. W.E. Lee and S. Zhang: Int. Mater. Rev., 1999, vol. 44(3), pp. 77–104.

    Article  CAS  Google Scholar 

  4. J.S. Han, J.H. Heo, and J.H. Park: Ceram. Int., 2019, vol. 45(8), pp. 10481–91.

    Article  CAS  Google Scholar 

  5. L. Chen, M. Guo, H. Shi, P.T. Jones, B. Blanpain, A. Malfliet, and V. Pandolfelli: J. Am. Ceram. Soc., 2016, vol. 99(11), pp. 3754–60.

    Article  CAS  Google Scholar 

  6. S. Zhang, H. Sarpoolaky, N.J. Marriott, and W.E. Lee: Br. Ceram. Trans., 2013, vol. 99, pp. 248–55.

    Article  Google Scholar 

  7. A.P. Luz, M.A.L. Braulio, A.G.T. Martinez, and V.C. Pandolfelli: Ceram. Int., 2011, vol. 37(8), pp. 3109–16.

    Article  CAS  Google Scholar 

  8. D. Wang, X. Li, H. Wang, Y. Mi, M. Jiang, and Y. Zhang: J. Non-Cryst. Solids, 2012, vol. 358(9), pp. 1196–1201.

  9. J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27(4), pp. 1961–72.

    Article  CAS  Google Scholar 

  10. S. Rose and T.D. Mcgee: Am. Ceram. Soc. Bull., 1978, vol. 57, pp. 674–79.

    Google Scholar 

  11. X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu: J. Iron Steel Res. Int., 2021, vol. 28(1), pp. 38–45.

  12. H.J. Wang, R. Caballero, and D. Sichen: J. Eur. Ceram. Soc., 2018, vol. 38(2), pp. 789–97.

    Article  CAS  Google Scholar 

  13. H.J. Wang and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47B(3), pp. 1858–65.

    Article  Google Scholar 

  14. I. Kasimagwa, V. Brabie, and P.G. Jonsson: Ironmak. Steelmak., 2014, vol. 41(2), pp. 121–31.

    Article  CAS  Google Scholar 

  15. J. Bygden, T. Debroy, and S. Seetharaman: Ironmak. Steelmak., 1994, vol. 21(4), pp. 318–23.

    CAS  Google Scholar 

  16. Y.W. Wei, Y.J. Dong, T. Zhang, J.F. Chen, and W. Yan: J. Iron Steel Res. Int., 2020, vol. 27, pp. 55–61.

    Article  CAS  Google Scholar 

  17. S.M. Jung and D.J. Min: ISIJ Int., 2010, vol. 50(11), pp. 1632–36.

    Article  CAS  Google Scholar 

  18. Y.J. Kim and D.J. Min: Steel Res Int., 2012, vol. 83(9), pp. 852–60.

    Article  CAS  Google Scholar 

  19. S.A. Suvorov and V.V. Kozlv: Refract. Ind. Ceram., 2014, vol. 55(2), pp. 127–29.

    Article  Google Scholar 

  20. S. Amini, M. Brungs, S. Jahanshahi, and O. Ostraovski: ISIJ Int., 2006, vol. 46(11), pp. 1554–59.

    Article  CAS  Google Scholar 

  21. M. Umakoshi, K. Mori, and Y. Kawai: Kyushu Daigaku Kogaku, 1980, vol. 53, pp. 191–206.

    Google Scholar 

  22. M. Umakoshi, K. Mori, and Y. Kawai: Trans. Iron Steel Inst. Jpn., 1984, vol. 24(7), pp. 532–39.

    Article  CAS  Google Scholar 

  23. M.A. Tayeb, A.N. Assis, S. Sridhar, and R.J. Fruehan: Metall. Mater. Trans. B, 2015, vol. 46B(3), pp. 1112–14.

    Article  Google Scholar 

  24. P. Zhang and S. Seetharaman: J. Am. Ceram. Soc., 1994, vol. 77(4), pp. 970–76.

    Article  CAS  Google Scholar 

  25. M.K. Oh and J.H. Park: Ceram. Int., 2021, vol. 47(14), pp. 20387–98.

    Article  CAS  Google Scholar 

  26. J.H. Park, M.O. Suk, I.-H. Jung, M. Guo, and B. Blanpain: Steel Res. Int., 2010, vol. 81(10), pp. 860–68.

    Article  CAS  Google Scholar 

  27. J.H. Park: Calphad-Comput. Coupling Ph. Diagr. Thermochem., 2007, vol. 31(2), pp. 149–54.

    Article  CAS  Google Scholar 

  28. J.S. Han, J.G. Kang, J.H. Shin, Y. Chung, and J.H. Park: Ceram. Int., 2018, vol. 44(11), pp. 13197–13204.

    Article  CAS  Google Scholar 

  29. Z.W. Yan, Z.Y. Deng, M.Y. Zhu, and L.Q. Huo: Metall. Mater. Trans. B, 2021, vol. 52B(1), pp. 1142–53.

    Article  Google Scholar 

  30. Z.W. Yan, Z.Y. Deng, and M.Y. Zhu: Metall. Metall. Mater. Trans. B, 2021, vol. 52B(4), pp. 2474–83.

    Article  Google Scholar 

  31. Z.W. Yan, Z.Y. Deng, and M.Y. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B(4), pp. 2806–15.

    Article  Google Scholar 

  32. P. Patnaik: Handbook of Inorganic Chemicals. The McGraw-Hill Companies, Inc., 2019, p. 162.

  33. P. Williams, M. Sunderland, and G. Briggs: Ironmak. Steelmak., 1982, vol. 9(4), pp. 150–62.

    Google Scholar 

  34. Y. Wanibe, T. Shimoda, K. Ito, and H. Sakao: Trans. ISIJ, 1983, vol. 69(10), pp. 1280–87.

    CAS  Google Scholar 

  35. M. Ito and K. Morita: Mater. Trans., 2004, vol. 45(8), pp. 2712–18.

    Article  CAS  Google Scholar 

  36. C. Wang, J.L. Zhang, Z.J. Liu, K.X. Jiao, G.W. Wang, J.Q. Yang, and K.C. Chou: Metall. Mater. Trans. B, 2017, vol. 48B(1), pp. 328–34.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support of The National Natural Science Foundation of China (Grant Nos. 52074073 and U20A20272) to this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyin Deng or Miaoyong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Deng, Z. & Zhu, M. Degradation Behavior of MgO Refractory by BOF Slags Containing Calcium Chloride. Metall Mater Trans B 53, 3115–3123 (2022). https://doi.org/10.1007/s11663-022-02590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02590-7

Navigation