Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bombardment history of the Moon constrained by crustal porosity

Abstract

The formation and evolution of the terrestrial planets were shaped by a bombardment of large impactors in a cluttered early Solar System. However, various surface processes degrade impact craters, and the early impact history of the Moon and the ages of its ancient impact basins remain uncertain. Here we show that the porosity of the lunar crust, generated by the cumulative crustal processing of impacts, can be used to determine the Moon’s bombardment history. We use a numerical model constrained by gravity data to simulate the generation of porosity by basin-forming impacts and the subsequent removal by smaller impacts and overburden pressure. We find that, instead of steadily increasing over the history of the Moon, lunar crustal porosity was largely generated early in lunar evolution when most basins formed and, on average, has decreased after that time. Using the Moon as a proxy for the terrestrial planets, we find that the terrestrial planets experienced periods of high crustal porosity early in their evolution. Our modelled porosities also provide an independent constraint on the chronological sequence of basin-forming impacts. Our results suggest that the inner solar system was subject to double the number of smaller impacts producing craters exceeding 20 km in diameter than has been previously estimated from traditional crater-counting analyses, whereas the bombardment record for the lunar basins (>200 km in diameter) is complete. This implies a limited late delivery of volatiles and siderophile elements to the terrestrial planets by impactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed lunar highlands crustal properties.
Fig. 2: Modelled lunar highlands crustal porosities.
Fig. 3: Comparison of the relationship between observed porosity and crater number density for the lunar highlands and our compaction model.

Similar content being viewed by others

Data availability

Source data are provided with this paper and also available through Zenodo at https://doi.org/10.5281/zenodo.6515777.

Code availability

The code used to model lunar crustal porosity is available from the corresponding author upon request.

References

  1. Fassett, C. I. Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system. J. Geophys. Res. Planets 121, 1900–1926 (2016).

    Article  Google Scholar 

  2. Smith, J. V. et al. Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Proc. Apollo 11 Lunar Sci. Conf. (ed Levinson, A. A.) 1, 897–925 (Pergammon Press, 1970).

  3. Borg, L. et al. Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim. Cosmochim. Acta 63, 2679–2691 (1999).

    Article  Google Scholar 

  4. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002).

    Article  Google Scholar 

  5. Hartmann, W. K. Dropping stone in magma oceans: effects of early lunar cratering. In Proc. Conference on Lunar Highlands Crust (eds Papike, J. J. & Merrill, R. B. P.) 155–171 (Pergamon Press, 1980).

  6. Neumann, G. A. et al. Planetary science: lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Sci. Adv. 1, e1500852 (2015).

    Article  Google Scholar 

  7. Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article  Google Scholar 

  8. Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001).

    Article  Google Scholar 

  9. Gault, D. E. Saturation and equilibrium conditions for impact cratering on the lunar surface: criteria and implications. Radio Sci. 5, 273–291 (1970).

    Article  Google Scholar 

  10. Xiao, Z. & Werner, S. C. Size–frequency distribution of crater populations in equilibrium on the Moon. J. Geophys. Res. Planets 120, 2277–2292 (2015).

    Article  Google Scholar 

  11. Head, J. W. et al. Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science 329, 1504–1507 (2010).

    Article  Google Scholar 

  12. Chapman, C. R. & McKinnon, W. B. in Satellites (eds Burns, J. A. & Matthews, M. S.) 492–580 (Univ. Arizona Press, 1986).

  13. Melosh, H. J., Ryan, E. V. & Asphaug, E. Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J. Geophys. Res. 97, 14735–14759 (1992).

    Article  Google Scholar 

  14. Wiggins, S. E., Johnson, B. C., Bowling, T. J., Melosh, H. J. & Silber, E. A. Impact fragmentation and the development of the deep lunar megaregolith. J. Geophys. Res. Planets 124, 941–957 (2019).

    Article  Google Scholar 

  15. Collins, G. S. Numerical simulations of impact crater formation with dilatancy. J. Geophys. Res. Planets 119, 2600–2619 (2014).

    Article  Google Scholar 

  16. Pohl, J., Stoffler, D., Gall, H. & Ernstson, K. in Impact and Explosion Cratering (eds Roddy, D. J. et al.) 343–404 (Pergamon Press, 1977).

  17. Rae, A. S. P. et al. Impact-induced porosity and microfracturing at the Chicxulub impact structure. J. Geophys. Res. Planets 124, 1960–1978 (2019).

    Article  Google Scholar 

  18. Mitchell, C. D. & James, P. B. Updated residual gravity anomaly map of meteor crater, AZ. In Proc. 53rd Lunar and Planetary Science Conference. LPI Contribution No. 2678: 2787 (2022).

  19. Gyalay, S. & Nimmo, F. Closing pores and cracking: a window to Martian history from a seismic wave speed discontinuity in the crust. In Proc. 53rd Lunar and Planetary Science Conference. LPI Contribution No. 2678: 1633 (2022).

  20. Johnson, B. C. et al. The formation of lunar multi-ring basins. Science 354, 441 (2016).

    Article  Google Scholar 

  21. Milbury, C. et al. Preimpact porosity controls the gravity signature of lunar craters. Geophys. Res. Lett. 42, 9711–9716 (2015).

    Article  Google Scholar 

  22. Love, S. G., Horz, F. & Brownlee, D. E. Target porosity effects in impact cratering and collisional disruption. Icarus 105, 216–224 (1993).

    Article  Google Scholar 

  23. Soderblom, J. M. et al. The fractured Moon: production and saturation of porosity in the lunar highlands from impact cratering. Geophys. Res. Lett. 42, 6939–6944 (2015).

    Article  Google Scholar 

  24. Ding, C. et al. Fragments delivered by secondary craters at the Chang’E-4 landing site. Geophys. Res. Lett. 47, E2020GL087361 (2020).

    Article  Google Scholar 

  25. Richardson, J. E., Melosh, H. J. & Greenberg, R. Impact-induced seismic activity on asteroid 433 Eros: a surface modification process. Science 306, 1526–1529 (2004).

    Article  Google Scholar 

  26. Güldemeister, N. & Wünnemann, K. Quantitative analysis of impact-induced seismic signals by numerical modeling. Icarus 296, 15–27 (2017).

    Article  Google Scholar 

  27. Wünnemann, K., Collins, G. S. & Osinski, G. R. Numerical modelling of impact melt production in porous rocks. Earth Planet. Sci. Lett. 269, 529–538 (2008).

    Article  Google Scholar 

  28. Gyalay, S., Nimmo, F., Plesa, A. C. & Wieczorek, M. Constraints on thermal history of Mars from depth of pore closure below InSight. Geophys. Res. Lett. 47, e2020GL088653 (2020).

    Article  Google Scholar 

  29. Fowler, A. C. A mathematical model of magma transport in the asthenosphere. Fluid Dyn. 33, 63–96 (1985).

    Article  Google Scholar 

  30. Andrews-Hanna, J. C. et al. Ring faults and ring dikes around the Orientale Basin on the Moon. Icarus 310, 1–20 (2018).

    Article  Google Scholar 

  31. Zuber, M. T. et al. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science 339, 668–671 (2013).

    Article  Google Scholar 

  32. Besserer, J. et al. GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys. Res. Lett. 41, 5771–5777 (2014).

    Article  Google Scholar 

  33. Goossens, S. et al. High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust. J. Geophys. Res. Planets 125, (2020).

  34. Kiefer, W. S., MacKe, R. J., Britt, D. T., Irving, A. J. & Consolmagno, G. J. The density and porosity of lunar rocks. Geophys. Res. Lett. 39, L07201 (2012).

    Article  Google Scholar 

  35. Huang, Q. & Wieczorek, M. A. Density and porosity of the lunar crust from gravity and topography. J. Geophys. Res. Planets 117, E05003 (2012).

    Article  Google Scholar 

  36. Kadish, S. J. et al. A Global Catalog of Large Lunar Craters (≥20 km) from the Lunar Orbiter Laser Altimeter. In Proc. 42nd Lunar and Planetary Science Conference. LPI Contribution No. 1608: 1006 (2011).

  37. Wahl, D., Wieczorek, M. A., Wünnemann, K. & Oberst, J. Crustal porosity of lunar impact basins. J. Geophys. Res. Planets 125, e2019JE006335 (2020).

    Article  Google Scholar 

  38. Venkatadri, T. K. & James, P. B. Variations of porosity in intermediate-sized lunar impact basins. Icarus 352, 113953 (2020).

    Article  Google Scholar 

  39. Wünnemann, K., Collins, G. S. & Melosh, H. J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180, 514–527 (2006).

    Article  Google Scholar 

  40. Morse, S. A. Adcumulus growth of anorthosite at the base of the lunar crust. J. Geophys. Res. Solid Earth 87, A10–A18 (1982).

    Article  Google Scholar 

  41. Huang, Y. H. et al. Heterogeneous impact transport on the Moon. J. Geophys. Res. Planets 122, 1158–1180 (2017).

    Article  Google Scholar 

  42. Clark, P. E. & Hawke, B. R. The lunar farside: the nature of highlands east to Mare Smythii. Earth Moon Planets 53, 93–107 (1991).

    Article  Google Scholar 

  43. Wilhelms, D. E. The Geologic History of the Moon (USGS, 1987).

  44. Fassett, C. I. et al. Lunar impact basins: stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. J. Geophys. Res. 117, E00H06 (2012).

    Google Scholar 

  45. Orgel, C. et al. Ancient bombardment of the inner solar system: reinvestigation of the “fingerprints” of different impactor populations on the lunar surface. J. Geophys. Res. Planets 123, 748–762 (2018).

    Article  Google Scholar 

  46. Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    Article  Google Scholar 

  47. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  Google Scholar 

  48. Riedel, C. et al. Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships. J. Geophys. Res. Planets 126, e2020JE006693 (2021).

    Article  Google Scholar 

  49. Hartmann, W. K. History of the terminal cataclysm paradigm: epistemology of a planetary bombardment that never (?) happened. Geosciences 9, 285 (2019).

  50. Warren, P. H. & Rasmussen, K. L. Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon. J. Geophys. Res. 92, 3453–3465 (1987).

    Article  Google Scholar 

  51. Meyer, J., Elkins-Tanton, L. & Wisdom, J. Coupled thermal–orbital evolution of the early Moon. Icarus 208, 1–10 (2010).

    Article  Google Scholar 

  52. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    Article  Google Scholar 

  53. Cockell, C. S., Lee, P., Osinski, G., Horneck, G. & Broady, P. Impact-induced microbial endolithic habitats. Meteorit. Planet. Sci. 37, 1287–1298 (2002).

    Article  Google Scholar 

  54. Russell, M. J., Hall, A. J. & Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 8, 355–371 (2010).

    Article  Google Scholar 

  55. Nisbet, E. G. & Sleep, N. H. The habitat and nature of early life. Nature 409, 1083–1091 (2001).

    Article  Google Scholar 

  56. Warren, P. H. & Wasson, J. T. The origin of KREEP. Rev. Geophys. 17, 73–88 (1979).

    Article  Google Scholar 

  57. Weiss, B. P. & Tikoo, S. M. The lunar dynamo. Science 346, 1246753 (2014).

    Article  Google Scholar 

  58. Halekas, J. S., Lin, R. P. & Mitchell, D. L. Magnetic fields of lunar multi-ring impact basins. Meteorit. Planet. Sci. 38, 565–578 (2003).

    Article  Google Scholar 

  59. Michael, G. G., Kneissl, T. & Neesemann, A. Planetary surface dating from crater size–frequency distribution measurements: Poisson timing analysis. Icarus 277, 279–285 (2016).

    Article  Google Scholar 

  60. Neukum, G. Meteorite Bombardment and Dating of Planetary Surfaces. Tenure dissertation, Ludwig-Maximilians Univ. (1983).

  61. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust–mantle origins. J. Geophys. Res. Planets 105, 4197–4216 (2000).

    Article  Google Scholar 

  62. Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).

    Article  Google Scholar 

  63. Pawlowicz, R. M_Map: a mapping package for MATLAB (2020).

  64. Wetherill, G. W. in The Soviet–American Conference on Cosmochemistry of the Moon and Planets (eds Pomeroy, J. H. & Hubbard, N. J.) 553–567 (NASA, 1977).

  65. Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012).

    Article  Google Scholar 

  66. Marchi, S., Bottke, W. F., Kring, D. A. & Morbidelli, A. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325–326, 27–38 (2012).

    Article  Google Scholar 

  67. Strom, R. G. The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005).

    Article  Google Scholar 

  68. Bottke, W. F. & Norman, M. D. The late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

    Article  Google Scholar 

  69. Stoffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System. Space Sci. Rev. 96, 9–54 (2001).

    Article  Google Scholar 

  70. Megiddo, N. Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30, 852–865 (1983).

    Article  Google Scholar 

  71. Best, M. G. Igneous and Metamorphic Petrology (Wiley-Blackwell, 2002).

  72. Wieczorek, M. A. et al. The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221–364 (2006).

    Article  Google Scholar 

  73. Prettyman, T. H. et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. Planets 111, E12007 (2006).

    Article  Google Scholar 

  74. Mustard, J. F. & Head, J. W. Buried stratigraphic relationships along the southwestern shores of Oceanus Procellarum: implications for early lunar volcanism. J. Geophys. Res. 101, 18913–18925 (1996).

    Article  Google Scholar 

  75. Povilaitis, R. Z. et al. Crater density differences: exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the Moon. Planet. Space Sci. 162, 41–51 (2018).

    Article  Google Scholar 

  76. Norman, M. D. & Nemchin, A. A. A 4.2 billion year old impact basin on the Moon: U-Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet. Sci. Lett. 388, 387–398 (2014).

    Article  Google Scholar 

  77. Schaeffer, O. A. & Husain, L. Chronology of lunar basin formation. In Proc. 5th Lunar Science Conference Vol. 2, 1541–1555 (Pergamon Press, Inc, 1974).

  78. Maurer, P., Eberhardt, P., Geiss, J., Grogler, N. & Stettler, A. Pre-Imbrian craters and basins: ages, compositions and excavation depths of Apollo 16 breccias. Geochem. Geophys. Geosyst. 42, 1687–1720 (1978).

    Google Scholar 

  79. Jessberger, E. K., Huneke, J. C., Podosek, F. A. & Wasserburg, G. J. High resolution argon analysis of neutron-irradiated Apollo 16 rocks and separated minerals. Proc. 5th Lunar Science Conference Vol. 2, 1419–1449 (Pergamon Press, Inc, 1974).

  80. Deutsch, A. & Stoffler, D. Rb–Sr-analyses of Apollo 16 melt rocks and a new age estimate for the Imbrium basin: lunar basin chronology and the early heavy bombardment of the Moon. Geochim. Cosmochim. Acta 51, 1951–1964 (1987).

    Article  Google Scholar 

  81. Stadermann, F. J., Heusser, E., Jessberger, E. K., Lingner, S. & Stoffler, D. The case for a younger Imbrium basin: new 40Ar–39Ar ages of Apollo 14 rocks. Geochim. Cosmochim. Acta 55, 2339–2349 (1991).

    Article  Google Scholar 

  82. Nemchin, A. A. et al. Ages of lunar impact breccias: limits for timing of the Imbrium impact. Geochemistry 81, 125683 (2021).

    Article  Google Scholar 

  83. Snape, J. F. et al. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth Planet. Sci. Lett. 451, 149–158 (2016).

    Article  Google Scholar 

  84. Černok, A. et al. Lunar samples record an impact 4.2 billion years ago that may have formed the Serenitatis Basin. Commun. Earth Environ. 2, 1–9 (2021).

    Article  Google Scholar 

  85. Ishihara, Y., Morota, T., Nakamura, R., Goossens, S. & Sasaki, S. Anomalous Moscoviense basin: single oblique impact or double impact origin? Geophys. Res. Lett. 38, L03201 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Nimmo for his helpful discussion and for providing the GRAIL-derived porosity data. Statistical support was provided by data science specialists S. Worthington and J. Liu at the Institute for Quantitative Social Science, Harvard University. This research was supported by the NASA Lunar Data Analysis Program grant NNX16AN62G.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was by J.M.S, D.A.M. and H.J.M; methodology was by Y.H.H., J.M.S. and M.H.; supervision was by J.M.S. and D.A.M.; writing of the original draft was by Y.H.H and J.M.S.; review and editing were done by D.A.M., M.H., H.J.M, Y.H.H. and J.M.S.; funding acquisition was handled by D.A.M., J.M.S. and H.J.M.

Corresponding author

Correspondence to Ya Huei Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Boris Ivanov, Zhiyong Xiao and Tiantian Liu for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and Stefan Lachowycz, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Statistical analysis of the relationship between observed porosity and crater counting ages.

(Left) Linear least square fitted relationship between the crater-counting age and observed porosity of lunar highlands basins for (a) all 29 dated basins, (b) dated basins excluding basins located within SP-A, and (c) the youngest basins (b) dated basins excluding basins located within SP-A, and (c) the youngest basins (<4.11 Ga). (Right) Normalized probability of the slope of the data shown in the left panels, from 50,000 bootstrapping samples with 95% BCa (bias-corrected and accelerated), confidence intervals. The BCa approach accounts for the non-Gaussian distribution of the slopes. We find no statistically significant relationship between basin age and porosity when considering all dated basins and all non SP-A dated basins (a slope of zero is within the 95% confidence intervals in panels a and b), though the non-SPA dated basin slope distribution is skewed and the mean is far from a slope of zero. When we only consider the youngest basins (<4.11 Ga), however, we find a statistically significant relationship between basin age and porosity (Panel C).

Source data

Extended Data Fig. 2 Number density maps of lunar craters.

These maps are similar to Fig. 1b, but use with different minimum crater diameters 200 (a), 300 (b) and 400 (c) km. These are compared with the observed porosity (d, bottom right, which is identical to Fig. 1a).

Source data

Extended Data Fig. 3 Model residual maps.

(a) Observed porosity, (b) modeled porosity, (c) ≥ 2 | 𝜎| model porosity residual (a minus b), (d) grain density (kg/m3), (e) observed N(20) and (f) observed bulk density. Red and blue data points indicate grid points for which model residuals are ≥ 2 | 𝜎| (~2.0% porosity). Yellow data points represent regions with anomalous estimates of grain density, mostly found at distances of ≤500 km from mare–highland boundaries and the Smythii region. Cyan data points indicate regions up range of oblique impacts, such as Moscoviense, Orientale, and Humboltianum, yielding higher porosity and lower bulk density values. Orange data points correlate with regions of distal ejecta (3–3.5 radii) of Orientale Basin, exhibiting low porosity and smaller N(20) values. The color data points correspond to the same data shown in Fig. 3.

Source data

Extended Data Fig. 4 Grain density variation across the northwestern boundary of PKT (a) and Orientale Basin (b).

The smooth transition likely reflects a diffuse boundary in the grain densities at the surface that is not reflective of the grain densities of the underlying crust. The dashed lines represent the center of the basins. The latitudes and longitudes of the northwestern boundary of PKT are 0°– 90°N and 200°E–320°E.

Source data

Extended Data Fig. 5 Map of oblique lunar highlands basins.

GRAIL-derived porosity is shown on a cylindrical projection. Black circles indicate indicate the 1 and 2 radii extents of each basin. The gray arrows indicate the impact direction identified by Wilhelms et al43.

Extended Data Fig. 6 Comparison of basin ages derived from the buffered nonsparseness correction technique (BNSC), samples, and our porosity modeled cratering records a) N(20) and b) basin ages.

Model cratering records (black circles) and associated uncertainties are the result shown in Supplementary Information. BNSC-derived basin ages (magenta circles) are from Orgel et al.45. The thick horizontal bars colored in yellow are proposed ages based on Apollo samples. For Imbrium, these youngest ages range from 3.75 Ga, from Rb-Sr radiometric derived ages of Apollo 16 impact melt rocks 60635 by Deutsch and Stöffler80 and 40Ar–39Ar ages of Apollo 14 rocks by Stadermann et al.81, to 3.95 Ga, from Schaeffer and Husain77. The age of Nectaris ranges from 3.98 Ga, from Jessberger et al.79 and Maurer et al.78, to 4.22–4.25 Ga, proposed by Norman and Nemchin76 and Schaeffer and Husain77. For Serenitatis, Snape et al.83 analyzed relative probability of phosphates Pb-Pb ages of four Apollo 14 melt breccias and found two spikes at ~3.92 and 3.94 Ga. An older age, 4.21 Ga, applying the same method to shocked phosphates from Apollo 17 samples, is suggested by Černok et al84.

Source data

Extended Data Fig. 7 Modeled lunar crust porosity for a double impact in Moscoviense region.

Bull-eyed pattern (lower porosity) in the northwestern part of 640 km diameter Moscoviense results from the smaller impact, ~401 km diameter (circled in red color) that post-dates the larger basin. This simulated pattern is inconsistent with the GRAIL-derived porosity data, discounting the possibility that Moscoviense is a double impact85.

Source data

Extended Data Table 1 Porosity density distribution in uprange and down-range from an oblique impact

Supplementary information

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 1

Statistical Source Data.

Source Data Extended Data Fig. 2

Statistical Source Data.

Source Data Extended Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 6

Statistical Source Data.

Source Data Extended Data Fig. 7

Statistical Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y.H., Soderblom, J.M., Minton, D.A. et al. Bombardment history of the Moon constrained by crustal porosity. Nat. Geosci. 15, 531–535 (2022). https://doi.org/10.1038/s41561-022-00969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00969-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing