Skip to main content
Log in

Volumetric Studies on Aqueous Lithium Pentaborate Solution from 288.15 to 323.15 K

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Densities for aqueous lithium pentaborate solutions at the molalities of (0.011–0.976) mol kg−1 were measured with an Anton Paar Digital vibrating-tube densimeter at temperature intervals of 5 K from 288.15 to 323.15 K. The coefficient of thermal expansion (α), apparent molar volume (\({{\varphi }_{V}}\)), apparent molar expansibility (\({{\varphi }_{E}}\)) and limiting apparent molar expansibility (\(\varphi _{{\text{E}}}^{0}\)) were obtained based on the experimental density data. On the basis of the Vogel–Tamman–Fulcher equation, the coefficients of the correlation equation for densities of LiB5O8(aq) against temperature and molality were parameterized. The results suggest a strong solute-solvent interaction in the solution, and lithium pentaborate is classified as a “structure breaking” solute. As temperatures rise, the hydrophilic character becomes unapparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gao, S.Y., Song, P.S., Xia, S.P., and Zheng, M.P., Salt Lake Chemistry: A New Type of Lithium and Boron Salt Lake, Beijing: Chin. Sci. Press, 2007.

    Google Scholar 

  2. Gao, S.Y., Fu, T.J., and Wang, J.Z., Chemistry of borate in salt lake brine, III: Maximum solubility of Mg-borate in concentrated salt lake brine, Chin. J. Inorg. Chem., 1985, vol. 1, no. 1, pp. 97–102.

    CAS  Google Scholar 

  3. Gao, S.Y., Xun, K.F., Li, G., et al., Chemistry of borate in salt lake brine, V: Study on the behaviour of borate in salt lake brine during dilution, Acta Chim. Sinica, 1986, vol. 44, no. 12, pp. 1229–1233.

    CAS  Google Scholar 

  4. Gao, S.Y. and Feng, J.N., Chemistry of borate in salt lake brine, XI: Experimental results during dilution of different concentrated brine, Chin. J. Inorg. Chem., 1992, vol. 8, no. 1, pp. 68–70.

    CAS  Google Scholar 

  5. Song, P.S., Du, X.H., and Sun, B., Study on ternary system MgB4O7–MgSO4–H2O at 25°C, 1987, Chin. Sci. Bull., vol. 32, no. 19, pp. 1492–1495.

    Article  Google Scholar 

  6. Millero, F.J., Molal volumes of electrolytes, Chem. Rev., 1971, vol. 71, no. 2, p. 147–176.

    Article  CAS  Google Scholar 

  7. Xiang, Z.L., Ma, P.S., Feng, L.M., et al., Correlation and determination of densities and viscosities for binary mixture of the cyclohexanone with cyclohexane at different temperature, Chem. Ind. Eng., 2006, vol. 23, no. 5, pp. 415–419.

    CAS  Google Scholar 

  8. Qiao, Y., Study on the densities, viscosities and phase equilibria of ionic liquids/carbon dioxide system. Tianjin University, 2010.

    Google Scholar 

  9. Zhou, Y.Q., Fang, C.H., Fang, Y., et al., Volumetric and transport properties of aqueous NaB(OH)4 solutions, Chin. J. Chem. Eng., 2013, vol. 21, no. 9, pp. 1048–1056.

    Article  CAS  Google Scholar 

  10. Balaev, A.D., Kazak, N.V., and Ovchinnikov, S.G., Magnetic properties of transition metal borates FeBO3, VBO3, and CrBO3, Acta Phys. Pol. B, 2003, vol. 34, no. 2, pp. 757–760.

    CAS  Google Scholar 

  11. Attfield, J.P., Clarke, J.F., and Perkins, D.A., Magnetic and crystal structures of iron borates, Physica B, 1992, vol. 180, no. 2, pp. 581–584.

    Article  Google Scholar 

  12. Débart, A., Revel, B., Dupont, L., et al., Study of the reactivity mechanism of M3B2O6 (with M = Co, Ni, and Cu) toward lithium, Chem. Mater., 2003, vol. 15, no. 19, pp. 3683–3691.

    Article  Google Scholar 

  13. Zheng, X.Y., Zhang, M.G., Xu, C., et al., Salt Lake of China, Beijing: Chin. Sci. Press, 2002.

    Google Scholar 

  14. Fu, J.L., Yu, S.S., Li, S.J., et al., Availability of tertiary oil field water resources in western Qaidam Basin, J. Salt Lake Res., 2005, vol. 13, pp. 17–21.

    Google Scholar 

  15. Deng, T.L. and Li, D.C., Solid–liquid metastable equilibria in the quaternary system (NaCl + KCl + CaCl2 + H2O) at 288.15 K, Fluid Phase Equilib., 2008, vol. 269, pp. 98–103.

    Article  CAS  Google Scholar 

  16. Abdulagatov, I.M. and Azizov, N.D., Densities and apparent molar volumes of concentrated aqueous LiCl solutions at high temperatures and high pressures. Chem. Geol., 2006, vol. 230, pp. 22–41.

    Article  CAS  Google Scholar 

  17. Abdulagatov, I.M. and Azizov, N.D., PVTx measurements and partial molar volumes for aqueous Li2SO4 solutions at temperatures from 297 to 573 K and at pressures up to 40 MPa, Int. J. Thermophys., 2003, vol. 24, pp. 1581–1610.

    Article  CAS  Google Scholar 

  18. Corti, H., Crovetto, R., and Fernández-Prini, R., Properties of the borate ion in dilute aqueous solutions. J. Chem. Soc. Faraday Trans., 1980, vol. 76, pp. 2179–2186.

    Article  CAS  Google Scholar 

  19. Corti, H., Crovetto, R., and Fernández-Prini, R., Mobilities and ion-pairing in LiB(OH)4 and NaB(OH)4 aqueous solutions: A conductivity study, J. Solution Chem., 1980, vol. 9, no. 8, pp. 617–625.

    Article  CAS  Google Scholar 

  20. Zhao, K.Y., Li, L., Li, J., et al., Apparent molar volumes of aqueous solutions of magnesium tetraborate from 283.15 to 363.15 K and 0.1 MPa, J. Solution Chem., 2018, vol. 47, pp. 827–837.

    Article  CAS  Google Scholar 

  21. Guo, Y.F., Zhao, K.Y., Li, L., et al., Volumetric properties of aqueous solution of lithium tetraborate from 283.15 to 363.15 K at 101.325 kPa, J. Chem. Thermodynamics, 2018, vol. 120, pp. 151–156.

    Article  CAS  Google Scholar 

  22. Reburn, W.T. and Gale, W.A., The system lithium oxide–boric oxide–water, J. Phys. Chem., 1995, vol. 59, no. 1, pp. 19–24.

    Article  Google Scholar 

  23. Wagner, W. and Pruss, A., The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 2002, vol. 31, pp. 387–535.

    Article  CAS  Google Scholar 

  24. Horvath, A.L., Handbook of Aqueous Electrolyte Solutions: Physical Properties, Estimation and Correlation Methods (Ellis Horwood Series in Physical Chemistry), New York: Halsted, 1985.

    Google Scholar 

  25. Balasubrahmanyam, S.N., Parachor and molecular volume: Some history and a suggestion, Curr. Sci. India, 2008, vol. 94, no. 12, pp. 1650–1658.

    Google Scholar 

  26. Harned, H.S. and Owen, B.B., The Physical Chemistry of Electrolyte Solutions, New York: Reinhold, 1958, pp. 634–649.

    Google Scholar 

  27. Masson, D.O., Solute molecular volumes in relation to solvation and ionization, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1929, vol. 8, no. 49, pp. 218–235.

    Article  CAS  Google Scholar 

  28. Nikam, P.S., Sawant, A.B., Khairnar, R.S., et al., Limiting partial molar volumes of (NH4)2SO4, K2SO4, and Al2(SO4)3 in dimethylsulphoxide + water at different temperatures, J. Mol. Liq., 1999, vol. 81, no. 3, pp. 253–260.

    Article  CAS  Google Scholar 

  29. Hepler, L.G., Thermal expansion and structure in water and aqueous solutions, Can. J. Chem., 1969, vol. 47, no. 24, pp. 4613–4617.

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the Natural Science Foundation of China (nos. U1707601 and 41503061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-wen Ge or Min Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai-wen Ge, Min Wang Volumetric Studies on Aqueous Lithium Pentaborate Solution from 288.15 to 323.15 K. Theor Found Chem Eng 56, 388–394 (2022). https://doi.org/10.1134/S004057952203006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952203006X

Keywords:

Navigation