Skip to main content
Log in

Influence of Saturation Temperature on Pressure Drop during Condensation of R-134a inside a Dimpled Tube: A Numerical Study

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, the numerical simulations for multiphase fluid flow inside a smooth and dimpled tube were investigated at low mass velocities during the condensation of R-134a to determine the pressure drop. The numerical analysis was conducted at a dryness fraction of 0.5, temperature of saturation of 30–50°C, and mass fluxes range between 50 and 200 kg m−2 s−1. The impact of mass flux on the pressure drops had been studied along the smooth and dimpled tube. The smooth and dimpled tubes were designed with an inside and outside diameter of 8.38 and 9.54 mm, respectively. The specifications of the dimpled tube were o = 1 mm, p = 5.08 mm, z = 4.99 mm, and e = 0.5 mm. The Volume of Fluid (VOF) flow model was utilized in this study and the flow field was assumed to be three-dimensional, transient and turbulent. With an increase in mass flux for both smooth and dimple tubes, total pressure drop and frictional pressure drop increases. The numerically simulated two-phase friction factor was compared with the well-known correlations of the dimple tube. Also, the numerically simulated pressure drop for the dimple tube was more compared with the plain tube and the pressure drop decreases with an increase in temperature of saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. K. Torikoshi, Heat transfer and pressure drop characteristics of r134a, r32 and a mixture of r32/r134a inside a horizontal tube, ASHRAE Trans., 1993, vol. 99, pp. 90–96.

  2. Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G., and Rossetto, L., Experimental investigation on condensation heat transfer and pressure drop of new hfc refrigerants (r134a, r125, r32, r410a, r236ea) in a horizontal smooth tube, Int. J. Refrig., 2001, vol. 24, no. 1, pp. 73–87.

    Article  CAS  Google Scholar 

  3. Shin, J.S. and Kim, M.H., An experimental study of condensation heat transfer in sub-millimeter rectangular tubes, J. Therm. Sci., 2004, vol. 13, no. 4, pp. 350–357.

    Article  Google Scholar 

  4. Han, C., Moon, C., Park, C., and Lee, K.-J., Condensation heat transfer correlation for smooth tubes in annular flow regime, J. Mech. Sci. Technol., 2006, vol. 20, no. 8, pp. 1275–1283.

    Article  Google Scholar 

  5. Shao, L., Han, J.-t., Su, G.-p., and Pan, J.-h., Condensation heat transfer of r134a in horizontal straight and helically coiled tube-in-tube heat exchangers, J. Hydrodyn., 2007, vol. 19, no. 6, pp. 677–682.

    Article  Google Scholar 

  6. Djordjevic, E., Kabelac, S., and Serbanovic, S., Heat transfer coefficient and pressure drop during refrigerant r-134a condensation in a plate heat exchanger, Chem. Pap., 2008, vol. 62, no. 1, pp. 78–85.

    Article  CAS  Google Scholar 

  7. Lips, S. and Meyer, J.P., Effect of gravity forces of heat transfer and pressure drop during condensation of r134a, Microgravity Sci. Technol., 2012, vol. 24, no. 3, pp. 157–164.

    Article  CAS  Google Scholar 

  8. Lips, S. and Meyer, J.P., Experimental study of convective condensation in an inclined smooth tube, Part I: Inclination effect on flow pattern and heat transfer coefficient, Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 1–3, pp. 395–404.

    Article  CAS  Google Scholar 

  9. Lips, S. and Meyer, J.P., Experimental study of convective condensation in an inclined smooth tube, Part II: Inclination effect on pressure drops and void fractions, Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 1–3, pp. 405–412.

    Article  CAS  Google Scholar 

  10. Meyer, J.P., Dirker, J., and Adelaja, A.O., Condensation heat transfer in smooth inclined tubes for r134a at different saturation temperatures, Int. J. Heat Mass Transfer, 2014, vol. 70, pp. 515–525.

    Article  CAS  Google Scholar 

  11. Mohseni, M., Akhavan-Behabadi, M., and Saeedinia, M., Flow pattern visualization and heat transfer characteristics of r-134a during condensation inside a smooth tube with different tube inclinations, Int. J. Heat Mass Transfer, 2013, vol. 60, pp. 598–602.

    Article  CAS  Google Scholar 

  12. Adelaja, A.O., Dirker, J., and Meyer, J. P. Experimental study of the pressure drop during condensation in an inclined smooth tube at different saturation temperatures, Int. J. Heat Mass Transfer, 2017, vol. 105, pp. 237–251.

    Article  CAS  Google Scholar 

  13. Xing, F., Xu, J., Xie, J., Liu, H., Wang, Z., and Ma, X., Froude number dominates condensation heat transfer of r245fa in tubes: Effect of inclination angles, Int. J. Multiphase Flow, 2015, vol. 71, pp. 98–115.

    Article  CAS  Google Scholar 

  14. Xu, W., Jia, L., and Tan, Z., Experimental study on condensation heat transfer characteristics of r410a in short vertical tubes, J. Therm. Sci., 2015, vol. 24, no. 3, pp. 260–268.

    Article  CAS  Google Scholar 

  15. Yang, Y. and Jia, L., Experimental investigation on heat transfer coefficient during upward flow condensation of r410a in vertical smooth tubes, J. Therm. Sci., 2015, vol. 24, no. 2, pp. 155–163.

    Article  Google Scholar 

  16. Murthy, K.R., Ranganayakulu, C., and Babu, T.A., Condensation heat transfer and pressure drop of r-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin, Heat Mass Transfer, 2017, vol. 53, no. 1, pp. 331–341.

    Article  Google Scholar 

  17. Abadi, S.N.R., Meyer, J.P., and Dirker, J., Effect of inclination angle on the condensation of r134a inside an inclined smooth tube, Chem. Eng. Res. Des., 2018, vol. 132, pp. 346–357.

    Article  Google Scholar 

  18. Ewim, D., Meyer, J.P., and Abadi, S.N.R., Condensation heat transfer coefficients in an inclined smooth tube at low mass fluxes, Int. J. Heat Mass Transfer, 2018, vol. 123, pp. 455–467.

    Article  CAS  Google Scholar 

  19. Ewim, D. and Meyer, J.P., Pressure drop during condensation at low mass fluxes in smooth horizontal and inclined tubes, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 686–701.

    Article  CAS  Google Scholar 

  20. Patel, T., Parekh, A., and Tailor, P., Experimental analysis of condensation heat transfer and frictional pressure drop in a horizontal circular mini channel, Heat Mass Transfer, 2019, vol. 56, no. 5, pp. 1579–1600.

    Article  Google Scholar 

  21. Chen, J., Muller-Steinhagen, H., and Duffy, G.G., Heat transfer enhancement in dimpled tubes, Appl. Therm. Eng., 2001, vol. 21, no. 5, pp. 535–547.

    Article  CAS  Google Scholar 

  22. Wang, Y., He, Y.-L., Li, R., and Lei, Y.-G., Heat transfer and friction characteristics for turbulent flow of dimpled tubes, Chem. Eng. Technol., 2009, vol. 32, no. 6, pp. 956–963.

    Article  CAS  Google Scholar 

  23. Rao, Y, Li., B., and Feng, Y., Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples, Exp. Therm. Fluid Sci., 2015, vol. 61, pp. 201–209.

    Article  Google Scholar 

  24. Kumar, P., Kumar, A., Chamoli, S., and Kumar, M., Experimental investigation of heat transfer enhancement and fluid flow characteristics in a protruded surface heat exchanger tube, Exp. Therm. Fluid Sci., 2016, vol. 71, pp. 42–51.

    Article  Google Scholar 

  25. Aroonrat, K. and Wongwises, S., Experimental study on two-phase condensation heat transfer and pressure drop of r-134a flowing in a dimpled tube, Int. J. Heat Mass Transfer, 2017, vol. 106, pp. 437–448.

    Article  CAS  Google Scholar 

  26. Aroonrat, K. and Somchai, W., Condensation heat transfer and pressure drop characteristics of r-134a flowing through dimpled tubes with different helical and dimpled pitches, Int. J. Heat Mass Transfer, 2018, vol. 121, pp. 620–631.

    Article  CAS  Google Scholar 

  27. Aroonrat, K. and Wongwises, S., Experimental investigation of condensation heat transfer and pressure drop of r-134a flowing inside dimpled tubes with different dimpled depths, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 783–793.

    Article  CAS  Google Scholar 

  28. Steiner, D., Heat transfer to boiling saturated liquids, Chapter Hbb of VDI-Wärmeatlas (VDI Heat Atlas), Düsseldorf: Verein Deutscher Ingenieure (VDI)—Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GCV), 1993.

  29. Niño, V.G., Hrnjak, P., and Newell, T., Characterization of two-phase flow in microchannels, Air Conditioning and Refrigeration Center. University of Illinois at Urbana–Champaign, 2002.

    Google Scholar 

  30. El Hajal, J., Thome, J.R., and Cavallini, A., Condensation in horizontal tubes, Part 1: Two-phase flow pattern map, Int. J. Heat Mass Transfer, 2003, vol. 46, no. 18, pp. 3349–3363.

    Article  Google Scholar 

  31. Harms, T.M., Li, D., and Groll, E.A., and Braun, J.E., A void fraction model for annular flow in horizontal tubes, Int. J. Heat Mass Transfer, 2003, vol. 46, no. 21, pp. 4051–4057.

    Article  Google Scholar 

  32. Xu, Y. and Fang, X., Correlations of void fraction for two-phase refrigerant flow in pipes, Appl. Therm. Eng., 2014, vol. 64, nos. 1–2, pp. 242–251.

    Article  CAS  Google Scholar 

  33. Kanizawa, F.T. and Ribatski, G., Void fraction predictive method based on the minimum kinetic energy, J. Braz. Soc. Mech. Sci. Eng., 2016, vol. 38, no. 1, pp. 209–225.

    Article  CAS  Google Scholar 

  34. Akers, W., Deans, H., and Crosser, O., Condensing heat transfer within horizontal tubes, Chem. Eng. Prog., Symp. Ser., 1959, vol. 55, no. 29, pp. 171–176.

    Google Scholar 

  35. Hirt, C.W. and Nichols, B.D., Volume of fluid (vof) method for the dynamics of free boundaries, J. Comput. Phys., 1981, vol. 39, no. 1, pp. 201–225.

    Article  Google Scholar 

  36. Lee, W., A pressure iteration scheme for two-phase flow modelling, in Multiphase Transport Fundamentals, Reactor Safety, Applications, Veziroglu, T., Ed., Washington, DC, USA: Hemisphere, 1980.

    Google Scholar 

  37. Liu, Z., Sunden, B., and Yuan, J., Vof modeling and analysis of filmwise condensation between vertical parallel plates, Heat Transfer Res., 2012, vol. 43, no. 1, pp. 47–68.

    Article  CAS  Google Scholar 

  38. Brackbill, J.U., Kothe, D.B., and Zemach, C., A continuum method for modelling surface tension, J. Comput. Phys., 1992, vol. 100, no. 2, pp. 335–354.

    Article  CAS  Google Scholar 

  39. Li, J.-D., Cfd simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers, Int. J. Heat Mass Transfer, 2013, vol. 57, no. 2, pp. 708–721.

    Article  Google Scholar 

  40. Yang, Z. and Shih, T.-H., New time scale based k-epsilon model for near-wall turbulence, AIAA J., 1993, vol. 31, no. 7, pp. 1191–1198.

    Article  CAS  Google Scholar 

  41. Rudman, M., Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids, 1997, vol. 24, no. 7, pp. 671–691.

    Article  CAS  Google Scholar 

  42. N. REFPROP, Thermodynamic properties of refrigerants and refrigerant mixtures, version 8.0, nist standard reference database 23. national institute of standards and technology. gaithersburg, md, 2005.

  43. Abadi, S.N.R., Mehrabi, M., Meyer, J.P., and Dirker, J., Effect of saturation temperature on the condensation of r134a inside an inclined smooth tube, Int. J. Refrig., 2018, vol. 94, pp. 186–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. S. M. Reddy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, N.V., Satyanarayana, K. & Venugopal, S. Influence of Saturation Temperature on Pressure Drop during Condensation of R-134a inside a Dimpled Tube: A Numerical Study. Theor Found Chem Eng 56, 395–406 (2022). https://doi.org/10.1134/S0040579522030125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522030125

Keywords:

Navigation