1932

Abstract

The nighttime is undergoing unprecedented change across much of the world, with natural light cycles altered by the introduction of artificial light emissions. Here we review the extent and dynamics of artificial light at night (ALAN), the benefits that ALAN provides, the environmental costs ALAN creates, approaches to mitigating these negative effects, and how costs are likely to change in the future. We particularly highlight the consequences of the increasingly widespread use of light-emitting diode (LED) technology for new lighting installations and to retrofit pre-existing ones. Although this has been characterized as a technological lighting revolution, it also constitutes a revolution in the environmental costs and impacts of ALAN, particularly because the LEDs commonly used for outdoor lighting have significant emissions at the blue wavelengths to which many biological responses are particularly sensitive. It is clear that a very different approach to the use of artificial lighting is required.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112420-014438
2022-10-17
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-112420-014438.html?itemId=/content/journals/10.1146/annurev-environ-112420-014438&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gaston KJ. 2019. Nighttime ecology: the ‘nocturnal problem’ revisited. Am. Nat. 193:481–502
    [Google Scholar]
  2. 2.
    IUCN 2021. 084 - Taking action to reduce light pollution. IUCN https://www.iucncongress2020.org/motion/084
    [Google Scholar]
  3. 3.
    Gaston KJ, Duffy JP, Gaston S, Bennie J, Davies TW 2014. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176:917–31
    [Google Scholar]
  4. 4.
    Gaston KJ, Davies TW, Nedelec SL, Holt LA. 2017. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48:49–68
    [Google Scholar]
  5. 5.
    Fouquet R, Pearson PJG. 2006. Seven centuries of energy services: the price and use of light in the United Kingdom (1300–2000). Energy J 27:139–77
    [Google Scholar]
  6. 6.
    Sánchez de Miguel A, Bennie J, Rosenfeld E, Dzurjak S, Gaston KJ. 2021. First estimation of global trends in nocturnal power emissions reveals acceleration of light pollution. Remote Sens. 13:3311
    [Google Scholar]
  7. 7.
    UN 2019. World population prospects 2019. United Nations https://population.un.org/wpp/Download/Standard/Population/
    [Google Scholar]
  8. 8.
    Kyba CCM, Kuester T, Sánchez de Miguel A, Baugh K, Jechow A et al. 2017. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3:e1701528
    [Google Scholar]
  9. 9.
    Cox DTC, Sánchez de Miguel A, Bennie J, Dzurjak SA, Gaston KJ 2022. Majority of artificially lit Earth surface associated with the non-urban population. Sci. Total Environ In press. https://doi.org/10.1016/j.scitotenv.2022.156782
    [Crossref] [Google Scholar]
  10. 10.
    Schneider A, Friedl MA, Potere D. 2009. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4:044033
    [Google Scholar]
  11. 11.
    Davies TW, Bennie J, Inger R, Gaston KJ 2013. Artificial light alters natural regimes of night-time sky brightness. Sci. Rep. 3:1722
    [Google Scholar]
  12. 12.
    Jechow A, Hölker F. 2019. Snowglow—The amplification of skyglow by snow and clouds can exceed full moon illuminance in suburban areas. J. Imaging 5:69
    [Google Scholar]
  13. 13.
    van Hasselt SJ, Hut RA, Allocca G, Vyssotski AL, Piersma T et al. 2021. Cloud cover amplifies the sleep-suppressing effect of artificial light at night in geese. Environ. Pollut. 273:116444
    [Google Scholar]
  14. 14.
    Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD et al. 2016. The new world atlas of artificial night sky brightness. Sci. Adv. 2:e1600377
    [Google Scholar]
  15. 15.
    Kocifaj M, Kundracik F, Barentine JC, Bara S. 2021. The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. MNRAS 504:L40–44
    [Google Scholar]
  16. 16.
    Davies TW, Duffy J, Bennie J, Gaston KJ 2014. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12:347–55
    [Google Scholar]
  17. 17.
    Ma T, Zhou Y, Zhou C, Haynie S, Pei T, Xu T 2015. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 158:453–64
    [Google Scholar]
  18. 18.
    Mellander C, Lobo J, Stolarick K, Matheson Z. 2015. Night-time light data: a good proxy measure for economic activity?. PLOS ONE 10:e0139779
    [Google Scholar]
  19. 19.
    Rybnikova NA, Portnov BA. 2015. Using light-at-night (LAN) satellite data for identifying clusters of economic activities in Europe. Lett. Spat. Resour. Sci. 8:307–34
    [Google Scholar]
  20. 20.
    Mård J, Di Baldassarre G, Mazzoleni M. 2018. Nighttime light data reveal how flood protection shapes human proximity to rivers. Sci. Adv. 4:eaar5779
    [Google Scholar]
  21. 21.
    Wicht M, Kuffer M. 2019. The continuous built-up area extracted from ISS night-time lights to compare the amount of urban green areas across European cities. Eur. J. Remote Sens. 52:58–73
    [Google Scholar]
  22. 22.
    Bará S, Rodríguez-Arós A, Perez M, Tosar B, Lima RC et al. 2019. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Light. Res. Technol. 51:1092–107
    [Google Scholar]
  23. 23.
    Kyba C, Ruby A, Kuechly HU, Kinzey B, Miller N et al. 2021. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 53:189–211
    [Google Scholar]
  24. 24.
    Peña-García A, Hurtado A, Aguilar-Luzón MC. 2015. Impact of public lighting on pedestrians’ perception of safety and well-being. Saf. Sci. 78:142–48
    [Google Scholar]
  25. 25.
    Perkins C, Steinbach R, Tompson L, Green J, Johnson S et al. 2015. What is the effect of reduced street lighting on crime and road traffic injuries at night? A mixed-methods study. Public Health Res 3:1–107
    [Google Scholar]
  26. 26.
    Steinbach R, Perkins C, Tompson L, Johnson S, Armstrong B et al. 2015. The effect of reduced street lighting on road casualties and crime in England and Wales: controlled interrupted time series analysis. J. Epidemiol. Community Health 69:1118–24
    [Google Scholar]
  27. 27.
    Welsh BC, Farrington DP. 2008. Effects of improved street lighting on crime. Campbell Syst. Rev. 4:1–51
    [Google Scholar]
  28. 28.
    Statista 2021. Number of billboards in the United States from 2016 to 2020. Statista https://www.statista.com/statistics/686026/number-billboards-usa/
    [Google Scholar]
  29. 29.
    Rydell J, Eklöf J, Sánchez-Navarro S. 2017. Age of enlightenment: long-term effects of outdoor aesthetic lights on bats in churches. R. Soc. Open Sci. 4:161077
    [Google Scholar]
  30. 30.
    Bowler M, Beirne C, Tobler MW, Anderson M, DiPaola A et al. 2020. LED flashlight technology facilitates wild meat extraction across the tropics. Front. Ecol. Environ. 18:489–95
    [Google Scholar]
  31. 31.
    Mgana H, Kraemer BM, O'Reilly CM, Staehr PA, Kimirei IA et al. 2019. Adoption and consequences of new light-fishing technology (LEDs) on Lake Tanganyika, East Africa. PLOS ONE 14:e0216580
    [Google Scholar]
  32. 32.
    Nguyen KW, Winger PD. 2019. Artificial light in commercial industrialized fishing applications: a review. Rev. Fish. Sci. Aquac. 27:106–26
    [Google Scholar]
  33. 33.
    Elvidge CD, Ghosh T, Baugh K, Zhizhin M, Hsu F-C et al. 2018. Rating the effectiveness of fishery closures with Visible Infrared Imaging Radiometer Suite boat detection data. Front. Mar. Sci. 5:132
    [Google Scholar]
  34. 34.
    Allman P, Agyekumhene A, Stemle L. 2021. Gillnet illumination as an effective measure to reduce sea turtle bycatch. Conserv. Biol. 35:967–75
    [Google Scholar]
  35. 35.
    McQuate GT, Jameson ML. 2011. Control of Chinese rose beetle through the use of solar-powered nighttime illumination. Entomol. Exp. Appl. 141:187–96
    [Google Scholar]
  36. 36.
    Shimoda M, Honda K-i. 2013. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 48:413–21
    [Google Scholar]
  37. 37.
    Ogino T, Uehara T, Muraji M, Yamaguchi T, Ichihashi T et al. 2016. Violet LED light enhances the recruitment of a thrip predator in open fields. Sci. Rep. 6:32302
    [Google Scholar]
  38. 38.
    Adams TSF, Mwezi I, Jordan NR. 2021. Panic at the disco: solar-powered strobe light barriers reduce field incursion by African elephants Loxodonta africana in Chobe District, Botswana. Oryx 55:739–46
    [Google Scholar]
  39. 39.
    Okemwa B, Gichuki N, Virani M, Kanya J, Kinyamario J, Santangeli A. 2018. Effectiveness of LED lights on bomas in protecting livestock from predation in southern Kenya. Conserv. Evid. 15:39–42
    [Google Scholar]
  40. 40.
    Zissis G, Bertoldi P, Serrenho T. 2021. Update on the status of LED-lighting world market since 2018 Tech. Rep. EUR 30500 EN EU Publ. Off. Luxemb:.
  41. 41.
    CIA 2021. The World Factbook. Central Intelligence Agency. https://www.cia.gov/the-world-factbook/
    [Google Scholar]
  42. 42.
    OICA 2020. International Organization of Motor Vehicle Manufacturers, motorization rate 2015 – worldwide. Organisation Internationale des Constructeurs d'Automobiles (International Organization of Motor Vehicle Manufacturers) http://www.oica.net/category/vehicles-in-use/
    [Google Scholar]
  43. 43.
    Rousseau Y, Watson RA, Blanchard JL, Fulton EA. 2019. Evolution of global marine fishing fleets and the response of fished resources. PNAS 116:12238–43
    [Google Scholar]
  44. 44.
    UNCTAD 2020. Handbook of Statistics 2020. United Nations Conference on Trade and Development https://unctadstat.unctad.org/EN/
    [Google Scholar]
  45. 45.
    Hadi SA, Al Kaabi MR, Al Ali MO, Arafat HA 2013. Comparative Life Cycle Assessment (LCA) of streetlight technologies for minor roads in United Arab Emirates. Energy Sustain. Dev. 17:438–50
    [Google Scholar]
  46. 46.
    Tähkämö L, Dillon H. 2017. Life cycle assessment of lighting technologies. Handbook of Advanced Lighting Technology R Karlicek, C-C Sun, G Zissis, R Ma 935–56 Cham, Switz: Springer
    [Google Scholar]
  47. 47.
    Tähkämö L, Halonen L. 2015. Life cycle assessment of road lighting luminaires—comparison of light-emitting diode and high-pressure sodium technologies. J. Clean. Prod. 93:234–42
    [Google Scholar]
  48. 48.
    Tähkämö L, Räsänen RS, Halonen L. 2016. Life cycle cost comparison of high-pressure sodium and light-emitting diode luminaires in street lighting. Int. J. Life Cycle Assess. 21:137–45
    [Google Scholar]
  49. 49.
    Franz M, Wenzl FP 2017. Critical review on life cycle inventories and environmental assessments of LED-lamps. Crit. Rev. Environ. Sci. Technol. 47:2017–78
    [Google Scholar]
  50. 50.
    Zissis G. 2017. Energy consumption and environmental and economic impact of lighting: the current situation. Handbook of Advanced Lighting Technology R Karlicek, C-C Sun, G Zissis, R Ma 921–33 Cham, Switz: Springer
    [Google Scholar]
  51. 51.
    Lobão JA, Devezas T, Catalão JPS. 2015. Energy efficiency of lighting installations: software application and experimental validation. Energy Rep 1:110–15
    [Google Scholar]
  52. 52.
    Pattison PM, Hansen M, Tsao JY. 2018. LED lighting efficacy: status and directions. C. R. Phys. 19:134–45
    [Google Scholar]
  53. 53.
    Djuretic A, Kostic M. 2018. Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting. Energy 157:367–78
    [Google Scholar]
  54. 54.
    Donatello S, Rodríguez Quintero R, Gama Caldas M, Wolf O, Van Tichelen P et al. 2019. Revision of the EU Green Public Procurement criteria for road lighting and traffic signals. Tech. Rep. EUR 29631 EN EU Publ. Off. Luxemb:.
  55. 55.
    Dale AT, Bilec MM, Asce M, Marriott J, Hartley D et al. 2011. Preliminary comparative life-cycle impacts of streetlight technology. J. Infrastruct. Syst. 17:193–99
    [Google Scholar]
  56. 56.
    Riegel KW. 1973. Light pollution. Science 179:1285–91
    [Google Scholar]
  57. 57.
    Walker C, UN Off. Outer Space Aff., eds 2021. Dark and Quiet Skies for Science and Society Vienna, Austria: UN Off. Outer Space Aff.
  58. 58.
    Pacheco-Tucuch FS, Ramirez-Sierra MJ, Gourbière S, Dumonteil E. 2012. Public street lights increase house infestation by the Chagas disease vector Triatoma dimidiata. PLOS ONE 7:e36207
    [Google Scholar]
  59. 59.
    Cho Y, Ryu S-H, Lee BR, Kim KH, Lee E, Choi J 2015. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiol. Int. 32:1294–1310
    [Google Scholar]
  60. 60.
    Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR et al. 2017. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption. STOTEN607–608 1073–84
    [Google Scholar]
  61. 61.
    Tasciotti L. 2017. Use of electricity and malaria occurrence: Is there a link? The case of Malawi. Energy Policy 101:310–16
    [Google Scholar]
  62. 62.
    Walker WH II, Bumgarner JR, Walton JC, Liu JA, Meléndez-Fernández OH et al. 2020. Light pollution and cancer. Int. J. Mol. Sci. 21:9360
    [Google Scholar]
  63. 63.
    Vetter C, Pattison PM, Houser K, Herf M, Phillips AJK et al. 2022. A review of human physiological responses to light: implications for the development of integrative lighting solutions. LEUKOS 18:387–414
    [Google Scholar]
  64. 64.
    Nadybal SM, Collins TW, Grineski SE. 2020. Light pollution inequities in the continental United States: a distributive environmental justice analysis. Environ. Res. 189:109959
    [Google Scholar]
  65. 65.
    Grubisic M, Haim A, Bhusal P, Dominoni DM, Gabriel KMA et al. 2019. Light pollution, circadian photoreception, and melatonin in vertebrates. Sustainability 11:6400
    [Google Scholar]
  66. 66.
    Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z et al. 2019. Melatonin synthesis and function: evolutionary history in animals and plants. Front. Endocrinol. 10:249
    [Google Scholar]
  67. 67.
    Luarte T, Bonta CC, Silva-Rodriguez EA, Quijón PA, Miranda C et al. 2016. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate. Environ. Pollut. 218:1147–53
    [Google Scholar]
  68. 68.
    van Langevelde F, van Grunsven RHA, Veenendaal EM, Fijen TPM. 2017. Artificial night lighting inhibits feeding in moths. Biol. Lett. 13:20160874
    [Google Scholar]
  69. 69.
    Ayalon I, Rosenberg Y, Benichou JIC, Campos CLD, Sayco SLG et al. 2020. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31:413–19.e3
    [Google Scholar]
  70. 70.
    Shier DM, Bird AK, Wang TB. 2020. Effects of artificial light at night on the foraging behavior of an endangered nocturnal mammal. Environ. Pollut. 263:114566
    [Google Scholar]
  71. 71.
    Stewart AJA, Perl CD, Niven JE. 2020. Artificial lighting impairs mate attraction in a nocturnal capital breeder. J. Exp. Biol. 223:jeb229146
    [Google Scholar]
  72. 72.
    Leclercq E, Taylor JF, Sprague M, Migaud H. 2011. The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacult. Eng. 44:35–47
    [Google Scholar]
  73. 73.
    Szendrő Z, Gerencsér Z, McNitt JI, Matics Z. 2016. Effect of lighting on rabbits and its role in rabbit production: a review. Livestock Sci 183:12–18
    [Google Scholar]
  74. 74.
    Palmer M, Gibbons R, Bhagavathula R, Davidson D, Holshouser D. 2017. Roadway lighting's impact on altering soybean growth Rep. FHWA-ICT-17–010 Ill. Cent. Transp. Springfield:
  75. 75.
    Schligler J, Cortese D, Beldade R, Swearer SE, Mills SC 2021. Long-term exposure to artificial light at night in the wild decreases survival and growth of a coral reef fish. Proc. R. Soc. B 288:20210454
    [Google Scholar]
  76. 76.
    McLeod LE, Costello MJ. 2017. Light traps for sampling marine biodiversity. Helgol. Mar. Res. 71:2
    [Google Scholar]
  77. 77.
    Van Doren BM, Horton KG, Dokter AM, Klinck H, Elbin SB, Farnsworth A. 2017. High-intensity urban light installation dramatically alters nocturnal bird migration. PNAS 114:11175–80
    [Google Scholar]
  78. 78.
    McLaren JD, Buler JJ, Schreckengost T, Smolinsky JA, Boone M et al. 2018. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 21:356–64
    [Google Scholar]
  79. 79.
    Rodríguez A, Holmes ND, Ryan PG, Wilson K-J, Faulquier L et al. 2017. Seabird mortality induced by land-based artificial lights. Conserv. Biol. 31:986–1001
    [Google Scholar]
  80. 80.
    Dimitriadis C, Fournari-Konstantinidou I, Sourbès L, Koutsoubas D, Mazaris AD. 2018. Reduction of sea turtle population recruitment caused by nightlight: evidence from the Mediterranean region. Ocean Coastal Manag 153:108–15
    [Google Scholar]
  81. 81.
    Tielens EK, Cimprich PM, Clark BA, DiPilla AM, Kelly JF et al. 2021. Nocturnal city lighting elicits a macroscale response from an insect outbreak population. Biol. Lett. 17:20200808
    [Google Scholar]
  82. 82.
    Van Doren BM, Willard DE, Hennen M, Horton KG, Stuber EF et al. 2021. Drivers of fatal bird collisions in an urban center. PNAS 118:e2101666118
    [Google Scholar]
  83. 83.
    ffrench-Constant RH, Somers-Yeates R, Bennie J, Economou T, Hodgson D et al. 2016. Light pollution is associated with earlier tree budburst across the United Kingdom. Proc. R. Soc. B 283:20160813
    [Google Scholar]
  84. 84.
    Robert KA, Lesku JA, Partecke J, Chambers B. 2015. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. B 282:20151745
    [Google Scholar]
  85. 85.
    Dominoni DM, Kjellberg Jensen J, de Jong M, Visser ME, Spoelstra K 2020. Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird. Ecol. Appl. 30:e02062
    [Google Scholar]
  86. 86.
    Senzaki M, Barber JR, Phillips JN, Carter NH, Cooper CB et al. 2020. Sensory pollutants alter bird phenology and fitness across a continent. Nature 587:605–9
    [Google Scholar]
  87. 87.
    Smith RA, Gagné M, Fraser KC. 2021. Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird. Environ. Pollut. 269:116136
    [Google Scholar]
  88. 88.
    Zheng Q, Teo HC, Koh LP. 2021. Artificial light at night advances spring phenology in the United States. Remote Sens. 13:399
    [Google Scholar]
  89. 89.
    Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C. 2017. Artificial light at night as a new threat to pollination. Nature 548:206–9
    [Google Scholar]
  90. 90.
    McMahon TA, Rohr JR, Bernal XE. 2017. Light and noise pollution interact to disrupt interspecific interactions. Ecology 98:1290–99
    [Google Scholar]
  91. 91.
    Sanders D, Kehoe R, Cruse D, van Veen FJF, Gaston KJ. 2018. Low levels of artificial light at night change food web dynamics. Curr. Biol. 28:2474–78
    [Google Scholar]
  92. 92.
    Maggi E, Bongiorni L, Fontanini D, Capocchi A, Dal Bello M et al. 2020. Artificial light at night erases positive interactions across trophic levels. Funct. Ecol. 34:694–706
    [Google Scholar]
  93. 93.
    Briolat ES, Gaston KJ, Bennie J, Rosenfeld EJ, Troscianko J. 2021. Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators. Nat. Commun. 12:4163
    [Google Scholar]
  94. 94.
    Canário F, Leitão AH, Tomé R. 2012. Predation attempts by short-eared and long-eared owls on migrating songbirds attracted to artificial lights. J. Raptor Res. 46:232–34
    [Google Scholar]
  95. 95.
    Underwood CN, Davies TW, Queirós AM. 2017. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86:781–89
    [Google Scholar]
  96. 96.
    Rodríguez A, Orozco-Valor PM, Sarasola JH. 2020. Artificial light at night as a driver of urban colonization by an avian predator. Landsc. Ecol. 36:17–27
    [Google Scholar]
  97. 97.
    Sanders D, Frago E, Kehoe R, Patterson C, Gaston KJ. 2021. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5:74–81
    [Google Scholar]
  98. 98.
    van Grunsven RHA, van Deijk JR, Donners M, Berendse F, Visser ME et al. 2020. Experimental light at night has a negative long-term impact on macro-moth populations. Curr. Biol. 30:R694–95
    [Google Scholar]
  99. 99.
    Lewis SM, Wong CH, Owens ACS, Fallon C, Jepsen S et al. 2020. A global perspective on firefly extinction threats. BioScience 70:157–67
    [Google Scholar]
  100. 100.
    Boyes DH, Evans DM, Fox R, Parsons MS, Pocock MJO. 2021. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7:eabi8322
    [Google Scholar]
  101. 101.
    Gaston KJ, Bennie J, Davies TW, Hopkins J. 2013. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88:912–27
    [Google Scholar]
  102. 102.
    Bennie J, Davies TW, Cruse D, Gaston KJ. 2016. Ecological effects of artificial light at night on wild plants. J. Ecol. 104:611–20
    [Google Scholar]
  103. 103.
    Ludvigsen M, Berge J, Geoffroy M, Cohen JH, De La Torre PR et al. 2018. Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4:eaap9887
    [Google Scholar]
  104. 104.
    Berge J, Geoffroy M, Daase M, Cottier F, Priou P et al. 2020. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 3:102–8
    [Google Scholar]
  105. 105.
    Guetté A, Godet L, Juigner M, Robin M 2018. Worldwide increase in artificial light at night around protected areas and within biodiversity hotspots. Biol. Conserv. 223:97–103
    [Google Scholar]
  106. 106.
    Koen EL, Minnaar C, Roever CL, Boyles JG. 2018. Emerging threat of the 21st century lightscape to global biodiversity. Glob. Change Biol. 24:2315–24
    [Google Scholar]
  107. 107.
    Garrett JK, Donald PF, Gaston KJ. 2020. Skyglow extends into world's Key Biodiversity Areas. Anim. Conserv. 23:153–59
    [Google Scholar]
  108. 108.
    Wittemeyer G, Eisen P, Bean WT, Coleman A, Burton O, Brashares JS. 2008. Accelerated human population growth at protected area edges. Science 321:123–26
    [Google Scholar]
  109. 109.
    Russ A, Rüger A, Klenke R. 2015. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156:123–31
    [Google Scholar]
  110. 110.
    Aulsebrook AE, Johnsson RD, Lesku JA. 2021. Light, sleep and performance in diurnal birds. Clocks Sleep 3:115–31
    [Google Scholar]
  111. 111.
    Gomes E, Rey B, Débias F, Amat I, Desouhant E. 2021. Dealing with host and food searching in a diurnal parasitoid: consequences of light at night at intra- and trans-generational levels. Insect Conserv. Diver. 14:235–46
    [Google Scholar]
  112. 112.
    Thakurdas P, Sharma S, Sinam B, Chib M, Joshi D. 2010. Nocturnal illumination dimmer than starlight altered the circadian rhythm of adult locomotor activity of a fruit fly. Chronobiol. Int. 27:83–94
    [Google Scholar]
  113. 113.
    Hoffmann J, Palme R, Eccard JA. 2018. Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations. Environ. Pollut. 238:844–51
    [Google Scholar]
  114. 114.
    Torres D, Tidau S, Jenkins S, Davies T. 2020. Artificial skyglow disrupts celestial migration at night. Curr. Biol. 30:R696–97
    [Google Scholar]
  115. 115.
    Foster JJ, Tocco C, Smolka J, Khaldy L, Baird E et al. 2021. Light pollution forces a change in dung beetle orientation behavior. Curr. Biol. 31:3935–42
    [Google Scholar]
  116. 116.
    van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D. 2011. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144:2274–81
    [Google Scholar]
  117. 117.
    Davies TW, Bennie J, Cruse D, Blumgart D, Inger R, Gaston KJ. 2017. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. Glob. Change Biol. 23:2641–48
    [Google Scholar]
  118. 118.
    Diamantopoulou C, Christoforou E, Dominoni DM, Kaiserli E, Czyzewski J et al. 2021. Wavelength-dependent effects of artificial light at night on phytoplankton growth and community structure. Proc. R. Soc. B 288:20210525
    [Google Scholar]
  119. 119.
    Fobert EK, Schubert KP, da Silva KB. 2021. The influence of spectral composition of artificial light at night on clownfish reproductive success. J. Exp. Mar. Biol. Ecol. 540:151559
    [Google Scholar]
  120. 120.
    Lewanzik D, Voigt CC. 2014. Artificial light puts ecosystem services of frugivorous bats at risk. J. Appl. Ecol. 51:388–94
    [Google Scholar]
  121. 121.
    Altermatt F, Ebert D. 2016. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol. Lett. 12:20160111
    [Google Scholar]
  122. 122.
    Hopkins GR, Gaston KJ, Visser ME, Elgar MA, Jones TM. 2018. Artificial light at night as a driver of evolutionary change across the urban-rural landscape. Front. Ecol. Environ. 16:472–79
    [Google Scholar]
  123. 123.
    Inger R, Bennie J, Davies TW, Gaston KJ. 2014. Potential biological and ecological effects of flickering artificial light. PLOS ONE 9:e98631
    [Google Scholar]
  124. 124.
    Gaston KJ, Holt LA. 2018. Nature, extent and ecological implications of night-time light from road vehicles. J. Appl. Ecol. 55:2296–307
    [Google Scholar]
  125. 125.
    Cox DTC, Maclean IMD, Gardner AS, Gaston KJ. 2020. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26:7099–111
    [Google Scholar]
  126. 126.
    Miller CR, Barton BT, Zhu L, Radeloff VC, Oliver KM et al. 2017. Combined effects of night warming and light pollution on predator–prey interactions. Proc. R. Soc. B 284:20171195
    [Google Scholar]
  127. 127.
    Kocifaj M, Barentine JC. 2021. Air pollution mitigation can reduce the brightness of the night sky in and near cities. Sci. Rep. 11:14622
    [Google Scholar]
  128. 128.
    Wilson R, Wakefield A, Roberts N, Jones G. 2021. Artificial light and biting flies: the parallel development of attractive light traps and unattractive domestic lights. Parasites Vectors 14:28
    [Google Scholar]
  129. 129.
    McMahon TA, Rohr JR, Bernal XE. 2017. Light and noise pollution interact to disrupt interspecific interactions. Ecology 98:1290–99
    [Google Scholar]
  130. 130.
    Pu G, Zeng D, Mo L, He W, Zhou L et al. 2019. Does artificial light at night change the impact of silver nanoparticles on microbial decomposers and leaf litter decomposition in streams?. Environ. Sci. Nano. 6:1728–39
    [Google Scholar]
  131. 131.
    Pu G, Zeng D, Mo L, Liao J, Chen X 2019. Artificial light at night alleviates the negative effect of Pb on freshwater ecosystems. Int. J. Mol. Sci. 20:1343
    [Google Scholar]
  132. 132.
    Thomas JR, James J, Newman RC, Riley WD, Griffiths SW, Cable J. 2016. The impact of streetlights on an aquatic invasive species: Artificial light at night alters signal crayfish behaviour. Appl. Anim. Behav. Sci. 176:143–49
    [Google Scholar]
  133. 133.
    Murphy SM, Vyas DK, Hoffman JL, Jenck CS, Washburn BA et al. 2021. Streetlights positively affect the presence of an invasive grass species. Ecol. Evol. 11:10320–26
    [Google Scholar]
  134. 134.
    Gerber BD, Karpanty SM, Randrianantenaina J. 2012. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J. Mammal. 93:667–76
    [Google Scholar]
  135. 135.
    Farris ZJ, Gerber BD, Karpanty S, Murphy A, Andrianjakarivelo V et al. 2015. When carnivores roam: temporal patterns and overlap among Madagascar's native and exotic carnivores. J. Zool. 296:45–57
    [Google Scholar]
  136. 136.
    Falchi F, Cinzano P, Elvidge CD, Keith DM, Haim A. 2011. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 92:2714–22
    [Google Scholar]
  137. 137.
    Gaston KJ, Davies TW, Bennie J, Hopkins J 2012. Reducing the ecological consequences of night-time light pollution: options and developments. J. Appl. Ecol. 49:1256–66
    [Google Scholar]
  138. 138.
    Peregrym M, Kónya EP, Falchi F. 2020. Very important dark sky areas in Europe and the Caucasus region. J. Environ. Manag. 274:111167
    [Google Scholar]
  139. 139.
    Rowse EG, Harris S, Jones G. 2018. Effects of dimming light-emitting diode street lights on light-opportunistic and light-averse bats in suburban environments. R. Soc. Open Sci. 5:180205
    [Google Scholar]
  140. 140.
    Pauwels J, Le Viol I, Bas Y, Valet N, Kerbiriou C 2021. Adapting street lighting to limit light pollution's impacts on bats. Global Ecol. Conserv. 28:e01648
    [Google Scholar]
  141. 141.
    Azam C, Kerbiriou C, Vernet A, Julien J-F, Bas Y et al. 2015. Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats?. Glob. Change Biol. 21:4333–41
    [Google Scholar]
  142. 142.
    Souman JL, Borra T, de Goijer I, Schlangen LJM, Vlaskamp BNS, Lucassen MP. 2018. Spectral tuning of white light allows for strong reduction in melatonin suppression without changing illumination level or color temperature. J. Biol. Rhythms 33:420–31
    [Google Scholar]
  143. 143.
    Wilson AA, Ditmer MA, Barber JR, Carter NH, Miller ET et al. 2021. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27:3987–4004
    [Google Scholar]
  144. 144.
    Green J, Perkins C, Steinbach R, Edwards P. 2015. Reduced street lighting at night and health: a rapid appraisal of public views in England and Wales. Health Place 34:171–80
    [Google Scholar]
  145. 145.
    Sánchez de Miguel A, Zamorano J, Aube M, Bennie J, Gallego J et al. 2021. Colour remote sensing of the impact of artificial light at night (II): calibration of DSLR-based images from the International Space Station. Remote Sens. Environ. 264:112611
    [Google Scholar]
  146. 146.
    Falchi F, Bará S. 2020. A linear systems approach to protect the night sky: implications for current and future regulations. R. Soc. Open Sci. 7:201501
    [Google Scholar]
  147. 147.
    Bara S, Falchi F, Lima RC, Pawley M. 2021. Keeping light pollution at bay: a red-lines, target values, top-down approach. Environ. Chall. 5:100212
    [Google Scholar]
  148. 148.
    Gao J, O'Neill BC. 2020. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 11:2302
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112420-014438
Loading
/content/journals/10.1146/annurev-environ-112420-014438
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error