Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hard X-ray helical dichroism of disordered molecular media

Abstract

Chirality is a structural property of molecules lacking mirror symmetry that has strong implications in diverse fields, ranging from life sciences to materials science. Chirality-sensitive spectroscopic methods, such as circular dichroism, exhibit weak signal contributions on an achiral background. Helical dichroism, which is based on the orbital angular momentum (OAM) of light, offers a new approach to probe molecular chirality, but it has never been demonstrated on disordered samples. Furthermore, in the optical domain the challenge lies in the need to transfer the OAM of the photon to an electron that is localized on an ångström-size orbital. Here we overcome this challenge using hard X-rays with spiral Fresnel zone plates, which can induce an OAM. We present the helical dichroism spectra of a disordered powder sample of enantiopure salts of the molecular complex of [Fe(4,4′-diMebpy)3]2+ at the iron K edge (7.1 keV) with OAM-carrying beams. The asymmetry ratios for the helical dichroism spectra are within one to five percent for OAM beams with topological charges of one and three. These results open a new window into the studies of molecular chirality and its interaction with the OAM of light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Δ (right) and Λ (left) enantiomers of chiral [Fe(4,4′-diMebpy)3]2+.
Fig. 2: Illustration of the experimental setup.
Fig. 3: Ptychographic reconstructions of helical beams used in the subsequent HD measurements.
Fig. 4: Fe K-edge X-ray absorption spectra of [Fe(4,4′-diMebpy)3]2+ with light carrying OAM values of L = ±1 and ±3.
Fig. 5: HD signals at the Fe K edge of Δ- and Λ-[Fe(4,4′-diMebpy)3] salts for L = ±1 (top) and L = ±3 (bottom).

Similar content being viewed by others

Data availability

Data needed to generate Figs. 3, 4 and 5 and associated scripts are available in the Supplementary Information.

References

  1. Barron, L. D. Symmetry and molecular chirality. Chem. Soc. Rev. 15, 189–223 (1986).

    Article  Google Scholar 

  2. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  3. Kaneyasu, T. et al. Limitations in photoionization of helium by an extreme ultraviolet optical vortex. Phys. Rev. A 95, 023413 (2017).

    Article  ADS  Google Scholar 

  4. Forbes, K. A. & Andrews, D. L. Orbital angular momentum of twisted light: chirality and optical activity. J. Phys. Photonics 3, 022007 (2021).

    Article  ADS  Google Scholar 

  5. Afanasev, A. et al. Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron. New J. Phys. 20, 023032 (2018).

    Article  ADS  Google Scholar 

  6. Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 7, 12998 (2016).

    Article  ADS  Google Scholar 

  7. De Ninno, G. et al. Photoelectric effect with a twist. Nat. Photonics 14, 554–558 (2020).

    Article  ADS  Google Scholar 

  8. Li, M., Yan, S., Zhang, Y., Chen, X. & Yao, B. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum. Nanoscale Adv. 3, 6897–6902 (2021).

    Article  ADS  Google Scholar 

  9. Allen, L., Padgett, M. J. & Babiker, M. in Progress in Optics Vol. 39 (ed. Wolf, E.) 291–372 (Elsevier, 1999).

  10. Andrews, D. L. & Babiker, M. (eds) The Angular Momentum of Light (Cambridge Univ. Press, 2012).

  11. Forbes, K. A. & Andrews, D. L. Optical orbital angular momentum: twisted light and chirality. Opt. Lett. 43, 435–438 (2018).

    Article  ADS  Google Scholar 

  12. Ye, L., Rouxel, J. R., Asban, S., Rösner, B. & Mukamel, S. Probing molecular chirality by orbital-angular-momentum-carrying X-ray pulses. J. Chem. Theory Comput. 15, 4180–4186 (2019).

    Article  Google Scholar 

  13. Kerber, R. M., Fitzgerald, J. M., Oh, S. S., Reiter, D. E. & Hess, O. Orbital angular momentum dichroism in nanoantennas. Commun. Phys. 1, 87 (2018).

    Article  Google Scholar 

  14. Brullot, W., Vanbel, M. K., Swusten, T. & Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2, e1501349 (2016).

    Article  ADS  Google Scholar 

  15. Ni, J. et al. Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum. ACS Nano 15, 2893–2900 (2021).

    Article  Google Scholar 

  16. Rouxel, J. R., Chernyak, V. Y. & Mukamel, S. Non-local real-space analysis of chiral optical signals. Chem. Sci. 7, 6824–6831 (2016).

    Article  Google Scholar 

  17. Varshalovich, D. A., Moskalev, A. N. & Khersonskii, V. K. Quantum Theory of Angular Momentum (World Scientific, 1988); https://doi.org/10.1142/0270

  18. Carrascal, B., Estevez, G. A., Lee, P. & Lorenzo, V. Vector spherical harmonics and their application to classical electrodynamics. Eur. J. Phys. 12, 184–191 (1991).

    Article  Google Scholar 

  19. Jodry, J. J., Frantz, R. & Lacour, J. Supramolecular stereocontrol of octahedral metal-centered chirality. Ligand modulation. Inorg. Chem. 43, 3329–3331 (2004).

    Article  Google Scholar 

  20. Reddy, G. N. M., Ballesteros-Garrido, R., Lacour, J. & Caldarelli, S. Determination of labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy. Angew. Chem. Int. Ed. 52, 3255–3258 (2013).

    Article  Google Scholar 

  21. Lacour, J., Jodry, J. J., Ginglinger, C. & Torche‐Haldimann, S. Diastereoselective ion pairing of TRISPHAT anions and tris(4,4′-dimethyl-2,2′-bipyridine)iron(II). Angew. Chem. Int. Ed. 37, 2379–2380 (1998).

    Article  Google Scholar 

  22. Sakdinawat, A. & Liu, Y. Soft-x-ray microscopy using spiral zone plates. Opt. Lett. 32, 2635–2637 (2007).

    Article  ADS  Google Scholar 

  23. Kohmura, Y. et al. Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration. Appl. Phys. Lett. 112, 123103 (2018).

    Article  ADS  Google Scholar 

  24. Vila-Comamala, J., Sakdinawat, A. & Guizar-Sicairos, M. Characterization of x-ray phase vortices by ptychographic coherent diffractive imaging. Opt. Lett. 39, 5281–5284 (2014).

    Article  ADS  Google Scholar 

  25. Odstrcil, M., Lebugle, M., Lachat, T., Raabe, J. & Holler, M. Fast positioning for X-ray scanning microscopy by a combined motion of sample and beam-defining optics. J. Synchrotron Radiat. 26, 504–509 (2019).

    Article  Google Scholar 

  26. Faulkner, H. M. L. & Rodenburg, J. M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004).

    Article  ADS  Google Scholar 

  27. Zhang, B. & Zhao, D. Focusing properties of Fresnel zone plates with spiral phase. Opt. Express 18, 12818–12823 (2010).

    Article  ADS  Google Scholar 

  28. Rösner, B. et al. High resolution beam profiling of X-ray free electron laser radiation by polymer imprint development. Opt. Express 25, 30686–30695 (2017).

    Article  ADS  Google Scholar 

  29. Rebernik Ribič, P. et al. Extreme-ultraviolet vortices from a free-electron laser. Phys. Rev. X 7, 031036 (2017).

    Google Scholar 

  30. Ricci, F. et al. Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer. Opt. Express 20, 22961–22975 (2012).

    Article  ADS  Google Scholar 

  31. Gawelda, W. et al. Structural determination of a short-lived excited iron(II) complex by picosecond x-ray absorption spectroscopy. Phys. Rev. Lett. 98, 057401 (2007).

    Article  ADS  Google Scholar 

  32. Lima, F. A. et al. A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution. Rev. Sci. Instrum. 82, 063111 (2011).

    Article  ADS  Google Scholar 

  33. Penfold, T. J. et al. X-ray spectroscopic study of solvent effects on the ferrous and ferric hexacyanide anions. J. Phys. Chem. A 118, 9411–9418 (2014).

    Article  Google Scholar 

  34. Peacock, R. D. & Stewart, B. Natural circular dichroism in X-ray spectroscopy. J. Phys. Chem. B 105, 351–360 (2001).

    Article  Google Scholar 

  35. Alagna, L. et al. X-ray natural circular dichroism. Phys. Rev. Lett. 80, 4799–4802 (1998).

    Article  ADS  Google Scholar 

  36. Carra, P. & Benoist, R. X-ray natural dichroism. Phys. Rev. B 62, R7703–R7706 (2000).

    Article  ADS  Google Scholar 

  37. Goulon, J. et al. X-ray natural circular dichroism in a uniaxial gyrotropic single crystal of LiIO3. J. Chem. Phys. 108, 6394–6403 (1998).

    Article  ADS  Google Scholar 

  38. Turchini, S. et al. Core electron transitions as a probe for molecular chirality: natural circular dichroism at the carbon K-edge of methyloxirane. J. Am. Chem. Soc. 126, 4532–4533 (2004).

    Article  Google Scholar 

  39. Villaume, S. & Norman, P. On circular dichroism and the separation between chromophore and chiral center: the near carbon K-edge X-ray absorption and circular dichroism spectra of noradrenaline and L-DOPA. Chirality 21, E13–E19 (2009).

    Article  Google Scholar 

  40. Forbes, K. A. & Garth, A. J. Optical vortex dichroism in chiral particles. Phys. Rev. A 103, 053515 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  41. Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

    Article  ADS  Google Scholar 

  42. van Veenendaal, M. Interaction between x-ray and magnetic vortices. Phys. Rev. B 92, 245116 (2015).

    Article  ADS  Google Scholar 

  43. Chergui, M. Picosecond and femtosecond X-ray absorption spectroscopy of molecular systems. Acta Crystallogr. A 66, 229–239 (2010).

    Article  ADS  Google Scholar 

  44. Chergui, M. & Collet, E. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods. Chem. Rev. 117, 11025–11065 (2017).

    Article  Google Scholar 

  45. Oppermann, M., Zinna, F., Lacour, J. & Chergui, M. Chiral control of spin-crossover dynamics in Fe(II) complexes. Nat. Chem. https://doi.org/10.1038/s41557-022-00933-0 (2022).

  46. Rouxel, J. R., Kowalewski, M. & Mukamel, S. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy. Struct. Dyn. 4, 044006 (2017).

    Article  Google Scholar 

  47. Bahrdt, J. et al. First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett. 111, 034801 (2013).

    Article  ADS  Google Scholar 

  48. Hemsing, E., Dunning, M., Hast, C., Raubenheimer, T. & Xiang, D. First characterization of coherent optical vortices from harmonic undulator radiation. Phys. Rev. Lett. 113, 134803 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council Advanced Grants H2020 ERCEA 695197 DYNAMOX, the Swiss NSF via the NCCR:MUST and grants 200020_169914 and 200021_175649. D.K. acknowledges funding from SNSF under grant no. 200021_175905. J.R.R. was supported by the Fédération André Marie Ampère (FRAMA) and the LABEX MANUTECH-SISE (ANR-10-LABX-0075) of the Université de Lyon, within the program ‘Investissements d’Avenir’ (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). C.B. and G.F.M. were supported via the InterMUST Women Fellowship. G.F.M. acknowledges the support of the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 851154). F.Z. and J.L. thank the University of Geneva and the Swiss NSF for support via grant 200020-184843.

Author information

Authors and Affiliations

Authors

Contributions

J.R.R., B.R., D. Karpov and M.C. conceived and organized the experiments. J.R.R., B.R., D. Karpov, C.B., G.F.M., D. Kinschel, O.C., C.S. and A.D. carried out the experiments. B.R. and C.D. designed and fabricated the spiral Fresnel zone plates. F.Z. and J.L. synthesized the chiral salts. M.O. characterized the samples and provided critical feedback. J.R.R., B.R. and M.C. interpreted the results and wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Jérémy R. Rouxel, Benedikt Rösner or Majed Chergui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jianhui Chen, Olga Smirnova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouxel, J.R., Rösner, B., Karpov, D. et al. Hard X-ray helical dichroism of disordered molecular media. Nat. Photon. 16, 570–574 (2022). https://doi.org/10.1038/s41566-022-01022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01022-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing