Skip to main content
Log in

Numerical simulation of superimposed finite strains using spectral element method

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A novel approach to the numerical modeling of superimposed finite strains is proposed in the article. The spectral element method is used for analysis. This method is an effective modification of the finite element method that provides exponential decrease of computational error as the order of element. The discretization of static problems of nonlinear elasticity under superimposed finite strains is carried out for spectral elements using the Galerkin method. The developed approach is further used for solution of some model problems of superimposed finite strains. The presented examples include the insertion of hyperelastic cylinder into the prestressed cylinder, the formation of a hole in a preloaded nonlinear-elastic sample, and the nonlinear bending of the layered beam with a prestressed layer. The examples demonstrate the robustness of the proposed algorithms. The results obtained are in good agreement with the analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.A.: Vibration analysis of non-linear 6-parameter prestressed shells. Meccanica 49(8), 1751–1761 (2014). https://doi.org/10.1007/s11012-013-9845-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach, H., Eremeyev, V.A.: On the elastic plates and shells with residual surface stresses. Procedia IUTAM 21, 25–32 (2017). https://doi.org/10.1016/j.piutam.2017.03.033

    Article  MATH  Google Scholar 

  3. Blatz, P.J., Ko, W.L.: Applications of finite elasticity theory to deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251 (1962). https://doi.org/10.1122/1.548937

    Article  Google Scholar 

  4. Dell’Isola, F., Ruta, G., Batra, R.: A second-order solution of Saint–Venant’s problem for an elastic pretwisted bar using Signorini’s perturbation method. J. Elast. 49, 113–127 (1997). https://doi.org/10.1023/A:1007498331650

    Article  MathSciNet  MATH  Google Scholar 

  5. Eremeyev, V.A., Lebedev, L.P., Cloud, M.J.: The Rayleigh and Courant variational principles in the six-parameter shell theory. Math. Mech. Solids 20(7), 806–822 (2015). https://doi.org/10.1177/1081286514553369

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, L., Liu, Y., Cai, Z.: Asymptotic solutions on the circumferential wrinkling of growing tubular tissues. Int. J. Eng. Sci. 128, 31–43 (2018). https://doi.org/10.1016/j.ijengsci.2018.03.005

    Article  MathSciNet  MATH  Google Scholar 

  7. Johnson, B.E., Hoger, A.: The use of a virtual configuration in formulating constitutive equations for residually stressed elastic materials. J. Elast. 41(3), 177–215 (1995). https://doi.org/10.1007/BF00041874

    Article  MathSciNet  MATH  Google Scholar 

  8. Komatitsch, D., Vilotte, J.-P.: The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)

    MATH  Google Scholar 

  9. Konovalov, D., Vershinin, A., Zingerman, K., Levin, V.: The implementation of spectral element method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes. Modell. Simul. Eng. 2017, 1797561 (2017). https://doi.org/10.1155/2017/1797561

    Article  Google Scholar 

  10. Lanir, Y.: Fibrous tissues growth and remodeling: evolutionary micro-mechanical theory. J. Mech. Phys. Solids 107, 115–144 (2017). https://doi.org/10.1016/j.jmps.2017.06.011

    Article  MathSciNet  ADS  Google Scholar 

  11. Levin, V.A.: Stress concentration near a hole, which is circular at the time of formation, in a body made of a viscoelastic material. Sov. Phys. Dokl. 33, 296–298 (1988)

    MATH  ADS  Google Scholar 

  12. Levin, V.A.: Theory of repeated superposition of large deformations: elastic and viscoelastic bodies. Int. J. Solids Struct. 35, 2585–2600 (1998). https://doi.org/10.1016/S0020-7683(98)80032-2

    Article  MATH  Google Scholar 

  13. Levin, V.A., Zingerman, K.M.: Interaction and microfracturing pattern for successive origination (introduction) of pores in elastic bodies: finite deformation. Trans. ASME J. Appl. Mech. 65(2), 431–435 (1998). https://doi.org/10.1115/1.2789072

    Article  ADS  Google Scholar 

  14. Levin, V.A., Vershinin, A.V.: Non-stationary plane problem of the successive origination of stress concentrators in a loaded body. Finite deformations and their superposition. Commun. Numer. Methods Eng. 24(12), 2229–2239 (2008). https://doi.org/10.1002/cnm.1092

    Article  MATH  Google Scholar 

  15. Levin, V.A., Zingerman, K.M.: Nonlinear computational mechanics of strength. Part 3. Exact and approximate analytical solutions. Fizmatlit, Moscow (2016) (in Russian)

  16. Levin, V.A., Zingerman, K.M., Vershinin, A.V., Freiman, E.I., Yangirova, A.V.: Numerical analysis of the stress concentration near holes originating in previously loaded viscoelastic bodies at finite strains. Int. J. Solids Struct. 50(20–21), 3119–3135 (2013). https://doi.org/10.1016/j.ijsolstr.2013.05.019

    Article  Google Scholar 

  17. Levitas, V.I., Levin, V.A., Zingerman, K.M., Freiman, E.I.: Displacive phase transitions at large strains: phase-field theory and simulations. Phys. Rev. Lett. 103, 025702 (2009). https://doi.org/10.1103/PhysRevLett.103.025702

    Article  ADS  Google Scholar 

  18. Lurie, A.I.: Non-Linear Theory of Elasticity. North Holland, Amsterdam (1990)

    Google Scholar 

  19. Merodio, J., Ogden, R.W., Rodriguez, J.: The influence of residual stress on finite deformation elastic response. Int. J. Nonlinear Mech. 56, 43–49 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.02.010

    Article  ADS  Google Scholar 

  20. Mooney, M.A.: Theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940). https://doi.org/10.1063/1.1712836

    Article  MATH  ADS  Google Scholar 

  21. Murnaghan, F.D.: Finite Deformation of an Elastic Solid. Wiley, New York (1951)

    MATH  Google Scholar 

  22. Oden, J.T.: Finite Elements of Nonlinear Continua. Dover, Mineola (2006)

    MATH  Google Scholar 

  23. Ogden, R.V.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  24. Rodriguez, E., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994). https://doi.org/10.1016/0021-9290(94)90021-3

    Article  Google Scholar 

  25. Zienkievicz, O.C., Taylor, R.L.: The Finite Element Method. Volume 1: The Basis. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  26. Zingerman, K.M., Levin, V.A.: Extension of the Lamé–Gadolin problem for large deformations and its analytical solution. Appl. Math. Mech. 77(2), 235–244 (2013). https://doi.org/10.1016/j.jappmathmech.2013.07.016

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research for this article was performed in Lomonosov Moscow State University and was financially supported by the Ministry of Science and Higher Education of the Russian Federation as part of the program of the Mathematical Center for Fundamental and Applied Mathematics under the agreement No. 075-15-2019-1621 (Sects. 1, 2), by the Ministry of Science and Higher Education of the Russian Federation under the agreement No. 075-15-2019-1890 (Sect. 3), by the grant of the President of the Russian Federation for young scientists—doctors of sciences MD-208.2021.1.1. (Sect. 5) and by Russian Scientific Foundation (Project No. 19-71-10008, Sects. 4, 6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Levin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A., Zingerman, K.M., Vershinin, A.V. et al. Numerical simulation of superimposed finite strains using spectral element method. Continuum Mech. Thermodyn. 34, 1205–1217 (2022). https://doi.org/10.1007/s00161-022-01115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01115-6

Keywords

Navigation