Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T02:41:16.647Z Has data issue: false hasContentIssue false

Image-Based Analysis of Weathered Slag for Calculation of Transport Properties and Passive Carbon Capture

Published online by Cambridge University Press:  04 July 2022

Faisal W. K. Khudhur*
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
Alice Macente
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
John M. MacDonald
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
Luke Daly
Affiliation:
School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK Centre for Microscopy and Microanalysis, University of Sydney, Sydney, 2006 NSW, Australia Department of Materials, University of Oxford, Oxford OX1 3PH, UK
*
*Corresponding author: Faisal W. K. Khudhur, E-mail: f.khudhur.1@research.gla.ac.uk
Get access

Abstract

Weathering of silicate-rich industrial wastes such as slag can reduce emissions from the steelmaking industry. During slag weathering, different minerals spontaneously react with atmospheric CO2 to produce calcite. Here, we evaluate the CO2 uptake during slag weathering using image-based analysis. The analysis was applied to an X-ray computed tomography (XCT) dataset of a slag sample associated with the former Ravenscraig steelworks in Lanarkshire, Scotland. The element distribution of the sample was studied using scanning electron microscopy (SEM), coupled with energy-dispersive spectroscopy (EDS). Two advanced image segmentation methods, namely trainable WEKA segmentation in the Fiji distribution of ImageJ and watershed segmentation in Avizo ® 9.3.0, were used to segment the XCT images into matrix, pore space, calcite, and other precipitates. Both methods yielded similar volume fractions of the segmented classes. However, WEKA segmentation performed better in segmenting smaller pores, while watershed segmentation was superior in overcoming the partial volume effect presented in the XCT data. We estimate that CO2 has been captured in the studied sample with an uptake between 20 and 17 kg CO2/1,000 kg slag for TWS and WS, respectively, through calcite precipitation.

Type
Materials Science Applications
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Khulaifi, Y, Lin, Q, Blunt, MJ & Bijeljic, B (2017). Reaction rates in chemically heterogeneous rock: Coupled impact of structure and flow properties studied by X-ray microtomography. Environ Sci Technol 51, 41084116. doi:10.1021/ACS.EST.6B06224CrossRefGoogle ScholarPubMed
Amiotte Suchet, P, Probst, J-L & Ludwig, W (2003). Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem Cycles 17. doi:10.1029/2002GB001891CrossRefGoogle Scholar
Andrew, M, Menke, H, Blunt, MJ & Bijeljic, B (2015). The imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp Porous Media 110, 124. doi:10.1007/S11242-015-0553-2CrossRefGoogle Scholar
Arandigoyen, M, Bicer-Simsir, B, Alvarez, JI & Lange, DA (2006). Variation of microstructure with carbonation in lime and blended pastes. Appl Surf Sci 252, 75627571. doi:10.1016/J.APSUSC.2005.09.007CrossRefGoogle Scholar
Archer, D (2007). Global Warming: Understanding the Forecast, 1st ed. Oxford; Malden, MA: Blackwell Publishing.Google Scholar
Arganda-Carreras, I, Kaynig, V, Rueden, C, Eliceiri, KW, Schindelin, J, Cardona, A & Seung, HS (2017). Trainable Weka segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 33, 24242426. doi:10.1093/bioinformatics/btx180CrossRefGoogle ScholarPubMed
Arganda-Carreras, I, Kaynig, V, Rueden, C, Schindelin, J, Cardona, A & Seung, HS (2016). Trainable_Segmentation: Release v3.1.2. doi:10.5281/ZENODO.59290CrossRefGoogle Scholar
Assima, GP, Larachi, F, Beaudoin, G & Molson, J (2012). CO2 sequestration in chrysotile mining residues—Implication of watering and passivation under environmental conditions. Ind Eng Chem Res 51, 87268734. doi:10.1021/IE202693QCrossRefGoogle Scholar
Baker, DR, Mancini, L, Polacci, M, Higgins, MD, Gualda, GAR, Hill, RJ & Rivers, ML (2012). An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 148, 262276. doi:10.1016/j.lithos.2012.06.008CrossRefGoogle Scholar
Berg, S, Rücker, M, Ott, H, Georgiadis, A, van der Linde, H, Enzmann, F, Kersten, M, Armstrong, RT, de With, S, Becker, J & Wiegmann, A (2016). Connected pathway relative permeability from pore-scale imaging of imbibition. Adv Water Resour 90, 2435. doi:10.1016/J.ADVWATRES.2016.01.010CrossRefGoogle Scholar
Berner, RA, Lasaga, AC & Garrels, RM (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283, 641683. doi:10.2475/ajs.283.7.641CrossRefGoogle Scholar
Beucher, S & Lantuéjoul, C (1979). Use of watersheds in contour detection. In International Workshop on Image Processing, Real-Time Edge and Motion Detection.Google Scholar
Boone, MA, Nielsen, P, De Kock, T, Boone, MN, Quaghebeur, M & Cnudde, V (2014). Monitoring of stainless-steel slag carbonation using X-ray computed microtomography. Environ Sci Technol 48, 674680. doi:10.1021/es402767qGoogle ScholarPubMed
Chang, EE, Pan, SY, Chen, YH, Chu, HW, Wang, CF & Chiang, PC (2011). CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195, 107114. doi:10.1016/j.jhazmat.2011.08.006CrossRefGoogle Scholar
Cheng, HD, Jiang, XH, Sun, Y & Wang, J (2001). Color image segmentation: Advances and prospects. Pattern Recognit 34, 22592281. doi:10.1016/S0031-3203(00)00149-7CrossRefGoogle Scholar
Chukwuma, JS, Pullin, H & Renforth, P (2021). Assessing the carbon capture capacity of South Wales’ legacy iron and steel slag. Miner Eng 173, 107232. doi:10.1016/J.MINENG.2021.107232Google Scholar
Crouzet, C, Brunet, F, Montes-Hernandez, G, Recham, N, Findling, N, Ferrasse, JH & Goffé, B (2017). Hydrothermal valorization of steel slags – Part I: Coupled H2 production and CO2 mineral sequestration. Front Energy Res 5, 112. doi:10.3389/fenrg.2017.00029CrossRefGoogle Scholar
Culture North Lanarkshire Museums (n.d.). Ravenscraig & the Steel Industry in Lanarkshire [WWW Document]. Available at https://www.culturenlmuseums.co.uk/story/ravenscraig-and-the-steel-industry-in-lanarkshire/ (accessed 24 June 2021).Google Scholar
Daval, D, Martinez, I, Corvisier, J, Findling, N, Goffé, B & Guyot, F (2009). Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling. Chem Geol 265, 6378. doi:10.1016/J.CHEMGEO.2009.01.022CrossRefGoogle Scholar
Deboodt, T, Wildenschild, D, Ideker, JH & Burkan Isgor, O (2021). Comparison of thresholding techniques for quantifying portland cement hydrates using synchrotron microtomography. Constr Build Mater 266, 121109. doi:10.1016/j.conbuildmat.2020.121109CrossRefGoogle Scholar
DeFoe, OK & Compton, AH (1925). The density of rock salt and calcite. Phys Rev 25, 618620. doi:10.1103/PhysRev.25.618CrossRefGoogle Scholar
Digabel, H & Lantuejoul, C (1978). Iterative algorithms. In: Proceedings of the 2nd European Symposium Quantitative Analysis of Microstructures in Material Science, Biology and Medicine, pp. 85–89.Google Scholar
Fusseis, F, Schrank, C, Liu, J, Karrech, A, Llana-Fúnez, S, Xiao, X & Regenauer-Lieb, K (2012). Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment. Solid Earth 3, 7186. doi:10.5194/SE-3-71-2012CrossRefGoogle Scholar
Gaillardet, J, Dupré, B, Louvat, P & Allègre, CJ (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159, 330. doi:10.1016/S0009-2541(99)00031-5CrossRefGoogle Scholar
Garfi, G, John, CM, Berg, S & Krevor, S (2020). The sensitivity of estimates of multiphase fluid and solid properties of porous rocks to image processing. Transp Porous Media 131, 9851005. doi:10.1007/s11242-019-01374-zCrossRefGoogle Scholar
Ghosh, A & Chatterjee, A (2013). Ironmaking and Steelmaking. PHI Learning Private Limited.Google Scholar
Gomes, HI, Mayes, WM, Rogerson, M, Stewart, DI & Burked, IT (2016). Alkaline residues and the environment: A review of impacts, management practices and opportunities. J Clean Prod. doi:10.1016/j.jclepro.2015.09.111Google Scholar
Guo, J, Bao, Y & Wang, M (2018). Steel slag in China: Treatment, recycling, and management. Waste Manag 78, 318330. doi:10.1016/J.WASMAN.2018.04.045CrossRefGoogle ScholarPubMed
Hall, M, Frank, E, Holmes, G, Pfahringer, B, Reutemann, P & Witten, IH (2009). The WEKA data mining software. ACM SIGKDD Explor Newsl 11, 1018. doi:10.1145/1656274.1656278Google Scholar
Hamilton, JL, Wilson, SA, Morgan, B, Turvey, CC, Paterson, DJ, Jowitt, SM, McCutcheon, J & Southam, G (2018). Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery. Int J Greenh Gas Control 71, 155167. doi:10.1016/j.ijggc.2018.02.008CrossRefGoogle Scholar
Hanna, RD & Ketcham, RA (2017). X-ray computed tomography of planetary materials: A primer and review of recent studies. Geochemistry 77, 547572. doi:10.1016/J.CHEMER.2017.01.006CrossRefGoogle Scholar
Hua, G, Wu, S, Jing, Z, Yu, X, Xu, K, Shi, W & Guan, M (2021). Rock physical and chemical alterations during the in-situ interaction between fracturing fluid and Silurian organic-rich shales in China. J Nat Gas Sci Eng 94, 104075. doi:10.1016/j.jngse.2021.104075CrossRefGoogle Scholar
Huh, Y (2003). Chemical weathering and climate — A global experiment: A review. Geosci J 7, 277288. doi:10.1007/BF02910294Google Scholar
Hyväluoma, J, Thapaliya, M, Alaraudanjoki, J, Sirén, T, Mattila, K, Timonen, J & Turtola, E (2012). Using microtomography, image analysis and flow simulations to characterize soil surface seals. Comput Geosci 48, 93101. doi:10.1016/j.cageo.2012.05.009CrossRefGoogle Scholar
Kelemen, PB, McQueen, N, Wilcox, J, Renforth, P, Dipple, G & Vankeuren, AP (2020). Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. Chem Geol 550, 119628. doi:10.1016/j.chemgeo.2020.119628CrossRefGoogle Scholar
Ketcham, RA & Carlson, WD (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comput Geosci 27, 381400. doi:10.1016/S0098-3004(00)00116-3CrossRefGoogle Scholar
Khudhur, FWK, MacDonald, JM, Macente, A & Daly, L (2022). The utilization of alkaline wastes in passive carbon capture and sequestration: Promises, challenges and environmental aspects. Sci Total Environ 823, 153553. doi:10.1016/J.SCITOTENV.2022.153553CrossRefGoogle ScholarPubMed
Latham, SJ, Varslot, T & Sheppard, A (2008). Automated registration for augmenting micro-CT 3D images. ANZIAM J 50, 534. doi:10.21914/anziamj.v50i0.1389CrossRefGoogle Scholar
Lee, BY, Kim, JK, Kim, JS & Kim, YY (2009). Quantitative evaluation technique of polyvinyl alcohol (PVA) fiber dispersion in engineered cementitious composites. Cem Concr Compos 31, 408417. doi:10.1016/J.CEMCONCOMP.2009.04.002CrossRefGoogle Scholar
Leu, L, Berg, S, Enzmann, F, Armstrong, RT & Kersten, M (2014). Fast X-ray micro-tomography of multiphase flow in berea sandstone: A sensitivity study on image processing. Transp Porous Media 105, 451469. doi:10.1007/s11242-014-0378-4Google Scholar
Macente, A, Fusseis, F, Butler, IB, Tudisco, E, Hall, SA & Andò, E (2018). 4D porosity evolution during pressure-solution of NaCl in the presence of phyllosilicates. Earth Planet Sci Lett 502, 115125. doi:10.1016/j.epsl.2018.08.032CrossRefGoogle Scholar
Macente, A, Fusseis, F, Menegon, L, Xianghui, X & John, T (2017). The strain-dependent spatial evolution of garnet in a high-P ductile shear zone from the Western Gneiss region (Norway): A synchrotron X-ray microtomography study. J Metamorph Geol 35, 565583. doi:10.1111/jmg.12245CrossRefGoogle Scholar
Mayes, WM, Riley, AL, Gomes, HI, Brabham, P, Hamlyn, J, Pullin, H & Renforth, P (2018). Atmospheric CO2 sequestration in iron and steel slag: Consett, County Durham, United Kingdom. Environ Sci Technol 52, 78927900. doi:10.1021/acs.est.8b01883CrossRefGoogle Scholar
Oluwadebi, AG, Taylor, KG & Ma, L (2019). A case study on 3D characterisation of pore structure in a tight sandstone gas reservoir: The Collyhurst Sandstone, East Irish Sea Basin, northern England. J Nat Gas Sci Eng 68, 102917. doi:10.1016/J.JNGSE.2019.102917CrossRefGoogle Scholar
Oskierski, HC, Dlugogorski, BZ & Jacobsen, G (2013). Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem Geol 358, 156169. doi:10.1016/j.chemgeo.2013.09.001CrossRefGoogle Scholar
Pan, SY, Chang, EE, Kim, H, Chen, YH & Chiang, PC (2016). Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications. J Hazard Mater 307, 253262. doi:10.1016/J.JHAZMAT.2015.12.065CrossRefGoogle ScholarPubMed
Power, IM, Harrison, AL, Dipple, GM, Wilson, SA, Kelemen, PB, Hitch, M & Southam, G (2013). Carbon mineralization: From natural analogues to engineered systems. Rev Mineral Geochemistry 77, 305360. doi:10.2138/rmg.2013.77.9CrossRefGoogle Scholar
Preim, B & Botha, C (2014). Image analysis for medical visualization. In: Visual Computing for Medicine. Morgan Kaufmann, pp. 111–175. doi:10.1016/B978-0-12-415873-3.00004-3CrossRefGoogle Scholar
Proctor, DM, Fehling, KA, Shay, EC, Wittenborn, JL, Green, JJ, Avent, C, Bigham, RD, Connolly, M, Lee, B, Shepker, TO & Zak, MA (2000). Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ Sci Technol 34, 15761582. doi:10.1021/es9906002CrossRefGoogle Scholar
Pullin, H, Bray, AW, Burke, IT, Muir, DD, Sapsford, DJ, Mayes, WM & Renforth, P (2019). Atmospheric carbon capture performance of legacy iron and steel waste. Environ Sci Technol 53, 95029511. doi:10.1021/acs.est.9b01265Google ScholarPubMed
Purswani, P, Karpyn, ZT, Enab, K, Xue, Y & Huang, X (2020). Evaluation of image segmentation techniques for image-based rock property estimation. J Pet Sci Eng 195, 107890. doi:10.1016/j.petrol.2020.107890CrossRefGoogle Scholar
Putnis, A & Mauthe, G (2001). The effect of pore size on cementation in porous rocks. Geofluids 1, 3741. doi:10.1046/j.1468-8123.2001.11001.xGoogle Scholar
Reddy, KR, Chetri, JK, Kumar, G & Grubb, DG (2019). Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions. Waste Manag 85, 425436. doi:10.1016/J.WASMAN.2019.01.013CrossRefGoogle ScholarPubMed
Renforth, P, Pogge von Strandmann, PAE & Henderson, GM (2015). The dissolution of olivine added to soil: Implications for enhanced weathering. Appl Geochem 61, 109118. doi:10.1016/j.apgeochem.2015.05.016CrossRefGoogle Scholar
Renforth, P, Washbourne, C-L, Taylder, J & Manning, DAC (2011). Silicate production and availability for mineral carbonation. Environ Sci Technol 45, 20352041. doi:10.1021/es103241wCrossRefGoogle ScholarPubMed
Rigaku Corporation (2022). SmartLab Studio II [WWW Document]. Available at https://www.rigaku.com/products/xrd/studio (accessed 24 March 2022).Google Scholar
Roerdink, JBTM & Meijster, A (2000). The watershed transform: Definitions, algorithms and parallelization strategies. Fundam Inform 41, 187228. doi:10.3233/FI-2000-411207CrossRefGoogle Scholar
Rücker, M, Berg, S, Armstrong, RT, Georgiadis, A, Ott, H, Schwing, A, Neiteler, R, Brussee, N, Makurat, A, Leu, L, Wolf, M, Khan, F, Enzmann, F & Kersten, M (2015). From connected pathway flow to ganglion dynamics. Geophys Res Lett 42, 38883894. doi:10.1002/2015GL064007CrossRefGoogle Scholar
Sanna, A, Dri, M, Hall, MR & Maroto-Valer, M (2012). Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective. Appl Energy 99, 545554. doi:10.1016/j.apenergy.2012.06.049CrossRefGoogle Scholar
Sarkar, G & Siddiqua, S (2016). Effect of fluid chemistry on the microstructure of light backfill: An X-ray CT investigation. Eng Geol 202, 153162. doi:10.1016/J.ENGGEO.2016.01.012CrossRefGoogle Scholar
Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, JY, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P & Cardona, A (2012). Fiji: An open-source platform for biological-image analysis. Nat Methods 9, 676682. doi:10.1038/nmeth.2019CrossRefGoogle ScholarPubMed
Schlüter, S, Sheppard, A, Brown, K & Wildenschild, D (2014). Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resour Res 50, 36153639. doi:10.1002/2014WR015256CrossRefGoogle Scholar
Schuiling, RD & Krijgsman, P (2006). Enhanced weathering: An effective and cheap tool to sequester CO2. Clim Change 74, 349354. doi:10.1007/s10584-005-3485-yCrossRefGoogle Scholar
Scott, PW, Critchley, SR & Wilkinson, FCF (1986). The chemistry and mineralogy of some granulated and pelletized blastfurnace slags. Mineral Mag 50, 141148.Google Scholar
Sengur, A, Budak, U, Akbulut, Y, Karabatak, M & Tanyildizi, E (2019). A survey on neutrosophic medical image segmentation. In Neutrosophic Set in Medical Image Analysis, Guo, Y & Ashour, AS (Eds.), pp. 145165. Elsevier. doi:10.1016/B978-0-12-818148-5.00007-2CrossRefGoogle Scholar
Shah, SM, Gray, F, Crawshaw, JP & Boek, ES (2016). Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution. Adv Water Resour 95, 276287. doi:10.1016/j.advwatres.2015.07.012CrossRefGoogle Scholar
Singh, A, Armstrong, R, Regenauer-Lieb, K & Mostaghimi, P (2019). Investigating rock micro-structure of sandstones by pattern recognition on their X-ray images. ASEG Ext Abstr 2019, 13. doi:10.1080/22020586.2019.12073166Google Scholar
Ter Teo, P, Seman, AA, Basu, P & Sharif, NM (2016). Characterization of EAF steel slag waste: The potential green resource for ceramic tile production. Procedia Chem 19, 842846. doi:10.1016/j.proche.2016.03.111CrossRefGoogle Scholar
Turner, CH, Brennan, JK, Pikunic, J & Gubbins, KE (2002). Simulation of chemical reaction equilibria and kinetics in heterogeneous carbon micropores. Appl Surf Sci 196, 366374. doi:10.1016/S0169-4332(02)00074-0CrossRefGoogle Scholar
van Eijnatten, M, van Dijk, R, Dobbe, J, Streekstra, G, Koivisto, J & Wolff, J (2018). CT image segmentation methods for bone used in medical additive manufacturing. Med Eng Phys 51, 616. doi:10.1016/J.MEDENGPHY.2017.10.008CrossRefGoogle ScholarPubMed
Vincent, L & Soille, P (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13, 583598. doi:10.1109/34.87344CrossRefGoogle Scholar
Wildenschild, D & Sheppard, AP (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51, 217246. doi:10.1016/j.advwatres.2012.07.018CrossRefGoogle Scholar
Wilson, SA, Dipple, GM, Power, IM, Thom, JM, Anderson, RG, Raudsepp, M, Gabites, JE & Southam, G (2009). Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton Creek and Cassiar Chrysotile deposits, Canada. Econ Geol 104, 95112. doi:10.2113/gsecongeo.104.1.95CrossRefGoogle Scholar
Yadav, S & Mehra, A (2017). Experimental study of dissolution of minerals and CO2 sequestration in steel slag. Waste Manag 64, 348357. doi:10.1016/j.wasman.2017.03.032CrossRefGoogle ScholarPubMed
You, K, Lee, S-H, Hwang, S-H, Kim, H & Ahn, J-W (2011). CO2 sequestration via a surface-modified ground granulated blast furnace slag using NaOH solution. Mater Trans 52, 19721976. doi:10.2320/matertrans.M2011110CrossRefGoogle Scholar
Zachara, J, Brantley, S, Chorover, J, Ewing, R, Kerisit, S, Liu, C, Perfect, E, Rother, G & Stack, AG (2016). Internal domains of natural porous media revealed: Critical locations for transport, storage, and chemical reaction. Environ Sci Technol 50, 28112829. doi:10.1021/acs.est.5b05015Google ScholarPubMed
Zevenhoven, R & Kavaliauskaite, I (2004). Mineral carbonation for long-term CO2 storage: An exergy analysis. Int J Thermodyn 7, 2331.Google Scholar
Supplementary material: File

Khudhur et al. supplementary material

Khudhur et al. supplementary material

Download Khudhur et al. supplementary material(File)
File 23.6 MB