Skip to main content

Advertisement

Log in

Hyperspectral imaging predicts yield and nitrogen content in grass–legume polycultures

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Successful use of hyperspectral imaging technology to progress precision agriculture is highly dependent on calibration on species of interest. To date, high-throughput hyperspectral imaging to predict plant growth and nutrient content has largely been limited to single-species cultivations. Therefore, this study aimed to calibrate a range of agronomic traits in mixed cultivations to hyperspectral image data. It successfully demonstrated that hyperspectral imaging can predict the plant traits biomass (g), foliar nitrogen (N) concentration (mg g−1) and N yield (mg), in grass and legume monocultures and polycultures in response to differential N and phosphorus (P) fertilization in a controlled greenhouse experiment. Visible light and near infrared (VNIR) and short wavelength infrared (SWIR) input resulted in only minor image misclassification (0.02%) for the green plants from the background regardless of species. The trained partial least square regression (PLSR) models VNIR-HH (hyper-hue) and SWIR had the lowest misclassification errors of 3.16% and 9.56% and were used for the grass–legume classification. For grass, there was good agreement between the mixed-effect models derived from the laboratory, and the PLSR models from hyperspectral measurements, except for the effect of N × P on N yield. Legume model agreement was not as precise as grass, likely because fertilizer-driven treatment effects on the measured traits were not as clear. Key wavelengths contributing to the strength of the PLSR models for predicting N content and biomass were identified from this study. Effective calibration of growth and nutrient uptake traits against hyperspectral data in mixed cultivations under controlled conditions is an important contribution towards improving remote sensing technologies for broader application in polyculture field cropping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data and material for this manuscript is available publicly at DOI XXXXXXXX.

Code availability

No custom code was produced for this manuscript.

References

  • Asaari, M., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., & Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 121–138. https://doi.org/10.1016/j.isprsjprs.2018.02.003

    Article  Google Scholar 

  • Axelsson, C., Skidmore, A., Schlerf, M., Fauzi, A., & Verhoef, W. (2013). Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. International Journal of Remote Sensing, 34(5), 1724–1743. https://doi.org/10.1080/01431161.2012.725958

    Article  Google Scholar 

  • Babu, Y. M. M., Subramanyam, M. V., & Prasad, M. G. (2012). PCA based image denoising. Signal & Image Processing, 3(2), 236.

    Google Scholar 

  • Ball, K. R., Power, S. A., Brien, C., Woodin, S., Jewell, N., Berger, B., & Pendall, E. (2020). High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass–legume mixture. PLoS ONE, 15(10), e0239673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ball, K. R., Woodin, S. J., Power, S. A., Brien, C. B., B.; , Smith, P., & Pendall, E. (2021). Integrating ecological stoichiometry to understand nutrient limitation and potential for competition in mixed pasture assemblages. Soil Science and Plant Nutrition.

  • Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Journal of Remote Sensing, 6(11), 10395–10412.

    Article  Google Scholar 

  • Berger, B., Parent, B., & Tester, M. (2010). High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 61(13), 3519–3528.

    Article  PubMed  CAS  Google Scholar 

  • Bingcheng, X., Weizhou, X., Zhi, W., Zhifei, C., Jairo, A. P., & Yinglong, C. (2018). Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2018.00165

    Article  Google Scholar 

  • Brar, G. S., Gomez, J. F., McMichael, B. L., Matches, A. G., & Taylor, H. M. (1991). Germination of Twenty Forage Legumes as Influenced by Temperature. Agronomy Journal, 83(1), 173–175. https://doi.org/10.2134/agronj1991.00021962008300010040x

    Article  Google Scholar 

  • Brien, C. J. (2020). asremlPlus: augments ASReml-R in fitting mixed models and packages generally in exploring prediction differences. R package version 4.2–28. Retrieved November 11, 2020 from https://cran.at.r-project.org/package=asremlPlus

  • Broderick, G. A. (1995). Desirable characteristics of forage legumes for improving protein utilization in ruminants. Journal of Animal Science, 73(9), 2760–2773. https://doi.org/10.2527/1995.7392760x

    Article  PubMed  CAS  Google Scholar 

  • Bruning, B., Berger, B., Lewis, M., Liu, H., & Garnett, T. (2020). Approaches, applications, and future directions for hyperspectral vegetation studies: An emphasis on yield-limiting factors in wheat. The Plant Phenome Journal. https://doi.org/10.1002/ppj2.20007

    Article  Google Scholar 

  • Bruning, B., Liu, H., Brien, C., Berger, B., Lewis, M., & Garnett, T. (2019a). The development of hyperspectral distribution maps to predict the content and distribution of nitrogen and water in wheat (Triticum aestivum). Frontiers in Plant Science, 10, 1380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruning, B., Liu, H., Brien, C., Berger, B., Lewis, M., & Garnett, T. (2019b). The Development of hyperspectral distribution maps to predict the content and distribution of nitrogen and water in wheat (Triticum aestivum). Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.01380

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., & Thompson, R. (2020). ASReml-R reference manual. Version 4.1.0.130. VSN International Ltd. http://asreml.org

  • Camino, C., González-Dugo, V., Hernández, P., Sillero, J., & Zarco-Tejada, P. (2018). Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. International Journal of Applied Earth Observations and Geoinformation, 70, 105–117. https://doi.org/10.1016/j.jag.2018.04.013

    Article  Google Scholar 

  • Chahl, J., & Liu, H. (2018). Bioinspired invertebrate pest detection on standing crops. SPIE, Bioinspiration, Biomimetics, and Bioreplication VIII, Denver, Colorado, United States.

  • Chapin, F. S. (1980). The Mineral Nutrition of Wild Plants. Annual Review of Ecology and Systematics, 11, 233–260.

    Article  CAS  Google Scholar 

  • Claesen, M., Simm, J., Popovic, D., & Moor, B. (2014). Hyperparameter tuning in Python using Optunity. Proceedings of the International Workshop on Technical Computing for Machine Learning and Mathematical Engineering,

  • Claesen, M., Simm, J., Popovic, D., Moreau, Y., & De Moor, B. (2014). Easy hyperparameter search using optunity. arXiv preprint. arXiv:1412.1114

  • Curran, P. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30, 271–278. https://doi.org/10.1016/0034-4257(89)90069-2

    Article  Google Scholar 

  • Del Pozo, A., Garnier, E., & Aronson, J. (2000). Contrasted nitrogen utilization in annual C 3 grass and legume crops: Physiological explorations and ecological considerations. Acta Oecologica, 21(1), 79–89. https://doi.org/10.1016/S1146-609X(00)00113-2

    Article  Google Scholar 

  • Duchene, O., Vian, J.-F., & Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, 240, 148–161. https://doi.org/10.1016/j.agee.2017.02.019

    Article  Google Scholar 

  • Gebbers, R., & Adamchuk, V. I. J. S. (2010). Precision Agriculture and Food Security., 327(5967), 828–831.

    CAS  Google Scholar 

  • Guo, J.-T., Yang, D.-C., Guan, Z., & He, Y.-H. (2017). Chlorophyll-catalyzed visible-light-mediated synthesis of tetrahydroquinolines from N, N-dimethylanilines and maleimides. The Journal of Organic Chemistry, 82(4), 1888–1894.

    Article  PubMed  CAS  Google Scholar 

  • Harrell, F. E. (2015). Multivariable modeling strategies. In Regression modeling strategies (pp. 63–102). Springer.

  • Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91. https://doi.org/10.1016/0034-4257(90)90100-Z

    Article  Google Scholar 

  • Lavergne, S., & Molofsky, J. (2004). Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Critical Reviews in Plant Sciences, 23(5), 415–429.

    Article  Google Scholar 

  • Lavergne, S., & Molofsky, J. (2006). Control strategies for the invasive reed canarygrass (Phalaris arundinacea L.) in North American wetlands: the need for an integrated management plan. Natural Areas Journal, 26(2), 208–214.

  • Ledgard, S. F. (2001). Nitrogen cycling in low input legume-based agriculture, with emphasis on legume/grass pastures [journal article]. Plant and Soil, 228(1), 43–59. https://doi.org/10.1023/a:1004810620983

    Article  CAS  Google Scholar 

  • Li, J.-M., Ye, X.-J., Wang, Q.-N., Zhang, C., & He, Y. (2014). Development of prediction models for determining N content in citrus leaves based on hyperspectral imaging technology. Spectroscopy and Spectral Analysis, 34(1), 212–216.

    PubMed  Google Scholar 

  • Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors (Basel, Switzerland), 14(11), 20078–20111. https://doi.org/10.3390/s141120078

    Article  Google Scholar 

  • Liu, H., Bruning, B., Berger, B., & Garnett, T. (2019). Green plant segmentation in hyperspectral images using SVM and hyper-hue. In 7th Edition of the international workshop on image analysis methods for the plant sciences, Lyon, France.

  • Liu, H., Bruning, B., Garnett, T., & Berger, B. (2020a). Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing. Computers and Electronics in Agriculture, 175, 105621.

    Article  Google Scholar 

  • Liu, H., Bruning, B., Garnett, T., & Berger, B. (2020b). The performances of hyperspectral sensors for proximal sensing of nitrogen levels in wheat. Sensors, 20(16), 4550. https://doi.org/10.3390/s20164550

    Article  PubMed Central  CAS  Google Scholar 

  • Liu, H., & Chahl, J. (2018). A multispectral machine vision system for invertebrate detection on green leaves. Computer and Elecronics in Agriculture, 150, 279–288. https://doi.org/10.1016/j.compag.2018.05.002

    Article  Google Scholar 

  • Liu, H., Lee, S. H., & Chahl, J. S. (2017). Transformation of a high-dimensional color space for material classification. Journal of the Optical Society of America A, 34(4), 523–532. https://doi.org/10.1364/josaa.34.000523

    Article  Google Scholar 

  • Louis, J. I. (2015). Carbon Assimilation, Biomass Partitioning and Productivity in Grasses. Agriculture, 5(4), 1116–1134. https://doi.org/10.3390/agriculture5041116

    Article  CAS  Google Scholar 

  • Makdessi, N., Ecarnot, M., Roumet, P., & Rabatel, G. (2019). A spectral correction method for multi-scattering effects in close range hyperspectral imagery of vegetation scenes: Application to nitrogen content assessment in wheat. Precision Agriculture, 20(2), 237–259. https://doi.org/10.1007/s11119-018-9613-2

    Article  Google Scholar 

  • Mason, N. W., Orwin, K., Lambie, S., Woodward, S. L., McCready, T., Mudge, P. J. E., & evolution. (2016). Leaf economics spectrum–productivity relationships in intensively grazed pastures depend on dominant species identity. 6(10), 3079–3091.

  • McAllister, C. H., Beatty, P. H., & Good, A. G. (2012). Engineering nitrogen use efficient crop plants: The current status. Plant Biotechnology Journal, 10(9), 1011–1025. https://doi.org/10.1111/j.1467-7652.2012.00700.x

    Article  PubMed  CAS  Google Scholar 

  • Moghimi, A., Yang, C., & Marchetto, P. (2018). Ensemble feature selection for plant phenotyping: A journey from hyperspectral to multispectral imaging. IEEE Access, 6, 56870–56884. https://doi.org/10.1109/ACCESS.2018.2872801

    Article  Google Scholar 

  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department Of Agriculture.

    Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825–2830.

  • Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B. J. R., Urquiaga, S., Boddey, R. M., Dakora, F. D., Bhattarai, S., & Maskey, S. L. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 48(1–3), 1–17.

    Article  CAS  Google Scholar 

  • Peoples, M. B., Chalk, P. M., Unkovich, M. J., & Boddey, R. M. (2015). Can differences in 15N natural abundance be used to quantify the transfer of nitrogen from legumes to neighbouring non-legume plant species? Soil Biology and Biochemistry, 87, 97–109. https://doi.org/10.1016/j.soilbio.2015.04.010

    Article  CAS  Google Scholar 

  • Perry, E. M., & Davenport, J. R. (2007). Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple. Computers and Electronics in Agriculture, 59(1–2), 56–65.

    Article  Google Scholar 

  • R Core Team. (2020). R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing. https://www.r-project.org

  • Rabatel, G., Al Makdessi, N., Ecarnot, M., & Roumet, P. (2017). A spectral correction method for multi-scattering effects in close range hyperspectral imagery of vegetation scenes: Application to nitrogen content assessment in wheat. Advances in Animal Biosciences, 8(2), 353–358. https://doi.org/10.1017/S2040470017000164

    Article  Google Scholar 

  • Sahoo, R. N., Ray, S., & Manjunath, K. (2015). Hyperspectral remote sensing of agriculture. Current Science, 108(5), 848–859.

    Google Scholar 

  • Sapkota, T. B., Majumdar, K., Jat, M. L., Kumar, A., Bishnoi, D. K., McDonald, A. J., & Pampolino, M. (2014). Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Research, 155, 233–244. https://doi.org/10.1016/j.fcr.2013.09.001

    Article  Google Scholar 

  • Schepers, J. S., & Francis, D. D. (1998). Precision agriculture—what’s in our future. Communications in Soil Science and Plant Analysis, 29(11–14), 1463–1469. https://doi.org/10.1080/00103629809370043

    Article  CAS  Google Scholar 

  • Searle, S. R., Speed, F. M., & Milliken, G. A. (1980). Population marginal means in the linear model: An alternative to least squares means. The American Statistician, 34(4), 216–221.

    Google Scholar 

  • Silva-Perez, V., Molero, G., Serbin, S., Condon, A., Reynolds, M., Furbank, R., & Evans, J. (2018). Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. Journal of Experimental Botany, 69(3), 483–496. https://doi.org/10.1093/jxb/erx421

    Article  PubMed  CAS  Google Scholar 

  • Steinier, J., Termonia, Y., & Deltour, J. (1972). Smoothing and differentiation of data by simplified least square procedure. Analytical Chemistry, 44(11), 1906. https://doi.org/10.1021/ac60319a045

    Article  PubMed  CAS  Google Scholar 

  • Tattaris, M., Reynolds, M., & Chapman, S. (2016). A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Frontiers in Plant Science, 7(2016). https://doi.org/10.3389/fpls.2016.01131

  • Thenkabail, P., Smith, R., & Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182. https://doi.org/10.1016/S0034-4257(99)00067-X

    Article  Google Scholar 

  • Watson, R., McDonald, W., & Bourke, C. (2000). Agfact P2.5.1. Phalaris pastures. Orange: New South Wales Department of Agriculture,

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2), 113–132. https://doi.org/10.1016/S0168-1699(02)00096-0

    Article  Google Scholar 

Download references

Funding

Funding for this project was provided by an Australian Plant Phenomics Facility postgraduate award to Kirsten Ball. The Australian Plant Phenomics Facility is funded by the Australian Government under the National Collaborative Research Infrastructure Strategy (NCRIS). Additional funds were provided by an Australian Postgraduate Award scholarship from the University of Western Sydney.

Author information

Authors and Affiliations

Authors

Contributions

KB designed and managed the experiment, assisted with statistical analyses and wrote the manuscript. JL processed and analysed the imaging data and wrote the manuscript. CB consulted on and produced the experimental design, performed statistical analyses, and consulted on the manuscript. BB consulted on experimental design, managed the experiment and directed the development of the manuscript. SP and EP assisted with the manuscript. The authors wish to recognize that this study was conducted at the University of Adelaide on the traditional lands of the Kaurna people.

Corresponding author

Correspondence to K. R. Ball.

Ethics declarations

Conflict of interest

The authors have no competing or conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, K.R., Liu, H., Brien, C. et al. Hyperspectral imaging predicts yield and nitrogen content in grass–legume polycultures. Precision Agric 23, 2270–2288 (2022). https://doi.org/10.1007/s11119-022-09920-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09920-4

Keywords

Navigation