Skip to main content
Log in

Full-parallax three-dimensional display based on light field reproduction

  • Special Section: Invited Review Paper
  • Optics Awards 2020 (OA 2020), Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Light field displays can display three-dimensional (3D) images with smooth motion parallax without the use of special glasses, by reproducing light ray information from objects. Because of this feature, light field displays can be applied in a wide range of fields, and various 3D display methods based on light field reproduction have been researched and developed. These methods can be classified into two types based on binocular parallax: horizontal and full parallax. In this study, we mainly discuss the integral 3D display, Aktina Vision, and compressive light field display, which can display full-parallax 3D images while also discussing horizontal parallax display methods. The basic principles and system configurations of each method are explained, and their characteristics and problems are discussed. In addition, the latest research on techniques to improve the display characteristics of 3D images is presented, such as display methods using multiple display devices or time-division multiplexing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wheatstone, C.: Contributions to the physiology of vision.—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128, 371–394 (1838)

    ADS  Google Scholar 

  2. Bando, T., Iijima, A., Yano, S.: Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review. Displays 33, 76–83 (2012)

    Article  Google Scholar 

  3. Gabor, D.: A new microscopic principle. Nature 161, 777 (1948)

    Article  ADS  Google Scholar 

  4. Lippmann, G.: Epreuves réversibles photographies integrals. C.-R. Acad. Sci. 146, 446–451 (1908)

    Google Scholar 

  5. Gershun, A.: The light field. J. Math. Phys. 18, 51–151 (1939)

    Article  MATH  Google Scholar 

  6. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. Computational models of visual processing, pp. 3–20. MIT Press (1991)

    Google Scholar 

  7. Levoy, M., Hanrahan, P.: Light field rendering: proceedings of ACM SIGGRAPH, pp. 1–12. ACM Press (1996)

    Google Scholar 

  8. Hoshino, H., Okano, F., Isono, H., Yuyama, I.: Analysis of resolution limitation of integral photography. J. Opt. Soc. Am. A 15, 2059–2065 (1998)

    Article  ADS  Google Scholar 

  9. Arai, J., Okano, F., Kawakita, M., Okui, M., Haino, Y., Yoshimura, M., Furuya, M., Sato, M.: Integral three-dimensional television using a 33-megapixel imaging system. J. Disp. Technol. 6, 422–430 (2010)

    Article  ADS  Google Scholar 

  10. Lee, B., Min, S.W., Javidi, B.: Theoretical analysis for three-dimensional integral imaging systems with double devices. Appl. Opt. 41, 4856–4865 (2002)

    Article  ADS  Google Scholar 

  11. Kim, Y., Park, J.H., Choi, H., Kim, J., Cho, S.W., Lee, B.: Depth-enhanced three-dimensional integral imaging by use of multilayered display devices. Appl. Opt. 45, 4334–4343 (2006)

    Article  ADS  Google Scholar 

  12. Okaichi, N., Kawakita, M., Sasaki, H., Watanabe, H., Mishina, T.: High-quality direct-view display combining multiple integral 3D images. J. Soc. Inf. Disp. 27, 41–52 (2019)

    Article  Google Scholar 

  13. Okaichi, N., Miura, M., Sasaki, H., Watanabe, H., Arai, J., Kawakita, M., Mishina, T.: Continuous combination of viewing zones in integral three-dimensional display using multiple projectors. Opt. Eng. 57, 061611 (2018)

    ADS  Google Scholar 

  14. Yamasaki, M., Sakai, H., Utsugi, K., Koike, T.: High-density light field reproduction using overlaid multiple projection images. Proc. SPIE-IS&T Electron. Imaging 7237, 723709-1–723709-8 (2009)

    Google Scholar 

  15. Watanabe, H., Okaichi, N., Sasaki, H., Kawakita, M.: Pixel-density and viewing-angle enhanced integral 3D display with parallel projection of multiple UHD elemental images. Opt. Express 28, 24731–24746 (2020)

    Article  ADS  Google Scholar 

  16. Lee, B., Jung, S., Min, S.W., Park, J.H.: Three-dimensional display by use of integral photography with dynamically variable image planes. Opt. Lett. 26, 1481–1482 (2001)

    Article  ADS  Google Scholar 

  17. Jang, J.S., Javidi, B.: Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Opt. Lett. 27, 324–326 (2002)

    Article  ADS  Google Scholar 

  18. Jung, S., Park, J.H., Choi, H., Lee, B.: Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement. Opt. Express 11, 1346–1356 (2003)

    Article  ADS  Google Scholar 

  19. Oh, Y., Shin, D., Lee, B.G., Jeong, S.I., Choi, H.J.: Resolution-enhanced integral imaging in focal mode with a time-multiplexed electrical mask array. Opt. Express 22, 17620–17629 (2014)

    Article  ADS  Google Scholar 

  20. Hong, S., Shin, D., Lee, J.J., Lee, B.G.: Viewing angle-improved 3d integral imaging display with eye tracking sensor. J. Inf. Commun. Converg. Eng. 12, 208–214 (2014)

    Google Scholar 

  21. Okaichi, N., Sasaki, H., Kano, M., Arai, J., Kawakita, M., Naemura, T.: Design of optical viewing zone suitable for eye-tracking integral 3D display. OSA Continuum 4, 1415–1429 (2021)

    Article  Google Scholar 

  22. Kim, Y., Park, G., Jung, J.H., Kim, J., Lee, B.: Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array. Appl. Opt. 48, 2178–2187 (2009)

    Article  ADS  Google Scholar 

  23. Okui, M., Kobayashi, M., Arai, J., Okano, F.: Moire fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display. Appl. Opt. 44, 4475–4483 (2005)

    Article  ADS  Google Scholar 

  24. Sasaki, H., Okaichi, N., Watanabe, H., Kano, M., Miura, M., Kawakita, M., Mishina, T.: Color moiré reduction and resolution enhancement of flat-panel integral three-dimensional display. Opt. Express 27, 8488–8503 (2019)

    Article  ADS  Google Scholar 

  25. Kim, Y., Kim, J., Kang, J.M., Jung, J.H., Choi, H., Lee, B.: Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Opt. Express 15, 18253–18267 (2007)

    Article  ADS  Google Scholar 

  26. Park, J.H., Kim, H.R., Kim, Y., Kim, J., Hong, J., Lee, S.D., Lee, B.: Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging. Opt. Lett. 29, 2734–2736 (2004)

    Article  ADS  Google Scholar 

  27. Cho, S.W., Park, J.H., Kim, Y., Choi, H., Kim, J., Lee, B.: Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging. Opt. Lett. 31, 2852–2854 (2006)

    Article  ADS  Google Scholar 

  28. Song, B., Min, S.-W.: 2D/3D convertible integral imaging display using point light source array instrumented by polarization selective scattering film. J. Opt. Soc. Korea 17, 162–167 (2013)

    Article  Google Scholar 

  29. Wang, Z., Wang, A., Wang, S., Xing, Y., Deng, Z., Ma, X., Ming, H.: High optical efficiency lensless 2D–3D convertible integral imaging display using an edge-lit light guide plate. J. Disp. Technol. 12, 1706–1709 (2016)

    Google Scholar 

  30. Watanabe, H., Omura, T., Okaichi, N., Sasaki, H., Arai, J., Kawakita, M., Javidi, B.: Integral 3D/2D partially convertible display using geometric phase lens array. Results Opt. 3, 1–10 (2021)

    Article  Google Scholar 

  31. Watanabe, H., Okaichi, N., Omura, T., Kano, M., Sasaki, H., Kawakita, M.: Aktina Vision: full-parallax three-dimensional display with 100 million light rays. Sci. Rep. 9, 17688 (2019)

    Article  ADS  Google Scholar 

  32. Omura, T., Watanabe, H., Okaichi, N., Sasaki, H., Kawakita, M.: Full-parallax 3D display using time-multiplexing projection technology. Electron. Imaging Proc. IS&T Electron. imaging 32, 100-1–101-5 (2020)

    Google Scholar 

  33. Ives, H.E.: Motion pictures in relief. J. Opt. Soc. Am. 18, 118–122 (1929)

    Article  ADS  Google Scholar 

  34. Balogh, T., Forgács, T., Agócs, T., Balet, O., Bouvier, E., Bettio, F., Gobbetti, E., Zanetti, G.: A scalable hardware and software system for the holographic display of interactive graphics applications: In: Eurographics (Short Presentations), pp. 109–112 (2005)

  35. Takaki, Y., Nago, N.: Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 18, 8824–8835 (2010)

    Article  ADS  Google Scholar 

  36. Kawakita, M., Iwasawa, S., Lopez-Gulliver, R., Inoue, N.: Glasses-free large-screen three-dimensional display and super multiview camera for highly realistic communication. Opt. Eng. 57, 061610 (2018)

    Article  ADS  Google Scholar 

  37. Nagano, K., Jones, A., Liu, J., Busch, J., Yu, X., Bolas, M., Debevec, P.: An autostereoscopic projector array optimized for 3D facial display. Proc. ACM SIGGRAPH Emerg. Technol. 3 (2013)

  38. Ni, L., Li, Z., Li, H., Liu, X.: 360-degree large-scale multiprojection light-field 3D display system. Appl. Opt. 57, 1817–1823 (2018)

    Article  ADS  Google Scholar 

  39. Yoshida, S.: fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays. Opt. Express 24, 13194–13203 (2016)

    Article  ADS  Google Scholar 

  40. Park, S.G., Hong, J.Y., Lee, C.K., Miranda, M., Kim, Y., Lee, B.: Depth-expression characteristics of multi-projection 3D display systems [invited]. Appl. Opt. 53, G198–G208 (2014)

    Article  Google Scholar 

  41. Suyama, S., Takada, H., Ohtsuka, S.: A direct-vision 3-D display using a new depth-fusing perceptual phenomenon in 2-D displays with different depths. IEICE Trans. Electron. E85-c, 1911–1915 (2002)

    Google Scholar 

  42. Lanman, D., Hirsch, M., Kim, Y., Raskar, R.: Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 1–10 (2010)

    Article  Google Scholar 

  43. Wetzstein, G., Lanman, D., Heidrich, W., Raskar, R.: Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 1–12 (2011)

    Article  Google Scholar 

  44. Wetzstein, G., Lanman, D., Hirsch, M., Raskar, R.: Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 1–11 (2012)

    Article  Google Scholar 

  45. Maimone, A., Wetzstein, G., Hirsch, M., Lanman, D., Raskar, R., Fuchs, H.: Focus 3D: compressive accommodation display. ACM Trans. Graph. 32, 1–13 (2013)

    Article  Google Scholar 

  46. Hirsch, M., Wetzstein, G., Raskar, R.: A compressive light field projection system. ACM Trans. Graph. 33, 1–12 (2014)

    Article  Google Scholar 

  47. Lee, S., Jang, C., Moon, S., Cho, J., Lee, B.: Additive light field displays: realization of augmented reality with holographic optical elements. ACM Trans. Graph. 35, 1–13 (2016)

    Google Scholar 

  48. Zhan, T., Lee, Y.H., Wu, S.T.: High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses. Opt. Express 26, 4863–4872 (2018)

    Article  ADS  Google Scholar 

  49. Jo, N.Y., Lim, H.G., Lee, S.K., Kim, Y.S., Park, J.H.: Depth enhancement of multi-layer light field display using polarization dependent internal reflection. Opt. Express 21, 29628–29636 (2013)

    Article  ADS  Google Scholar 

  50. Kim, D., Lee, S., Moon, S., Cho, J., Jo, Y., Lee, B.: Hybrid multi-layer displays providing accommodation cues. Opt. Express 26, 17170–17184 (2018)

    Article  ADS  Google Scholar 

  51. Maruyama, K., Takahashi, K., Fujii, T.: Comparison of layer operations and optimization methods for light field display. IEEE Access 8, 38767–38775 (2020)

    Article  Google Scholar 

  52. Saito, T., Kobayashi, Y., Takahashi, K., Fujii, T.: Displaying real-world light fields with stacked multiplicative layers: requirement and data conversion for input multiview images. J. Disp. Technol. 12, 1290–1300 (2016)

    Article  ADS  Google Scholar 

  53. Takahashi, K., Kobayashi, Y., Fujii, T.: From focal stack to tensor light-field display. IEEE Trans. Image Process. 27, 4571–4584 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Watanabe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H., Omura, T., Okaichi, N. et al. Full-parallax three-dimensional display based on light field reproduction. Opt Rev 29, 366–374 (2022). https://doi.org/10.1007/s10043-022-00752-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00752-1

Keywords

Navigation