Skip to main content
Log in

Investigation of the Corrosion Behavior of Wire Arc Additively Manufactured Alloy 825

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Additive manufacturing ensures the global adoption of zero-to-minimal waste and lean manufacturing systems. This is crucial for repairing, replacing, rebuilding, and rapidly producing components. The current study employs wire arc additive manufacturing (WAAM) with metal inert gas welding, which is affordable and versatile. The filler material used is Alloy 825, a highly corrosion-resistant alloy used extensively in the maritime and chemical sectors. The study compares the corrosion behavior of alloy 825 produced by the WAAM technique with that of wrought alloy 825. Electron backscatter diffraction analysis and hardness tests were also performed. Corrosion behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. Wire arc additively manufactured alloy had a corrosion rate of 0.117 mmpy, while the wrought alloy had a corrosion rate of 0.066 mmpy. Tafel's extrapolation method computed corrosion current density and corrosion potentials. Electrochemical impedance spectroscopy studies were carried out using Bode impedance and phase angle plots. A scanning electron microscope examined the morphology, while energy-dispersive spectroscopy studied the chemical analysis of the corrosion region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen H, Zhang Y, Giam A, Yan W, Addit Manuf., (2022) 102645.

  2. Qiu Z, Wu B, Zhu H, Wang Z, Hellier A, Ma Y, Li H, Muransky O, Wexler D, Mater Des., 195 (2020) 109007.

    Article  CAS  Google Scholar 

  3. Mansoor O, Wahdatullah N, Harshavardhana N, Int Res J Eng Technol., 8 (2021) 1517–1528.

    Google Scholar 

  4. Sayiram G, Arivazhagan N, Mater Charact., 102 (2015) 180–188.

    Article  CAS  Google Scholar 

  5. Han JW, Jung SH, Lee HW, Met Mater Int., (2021).

  6. Kangazian J, Shamanian M, J Manuf Process., 26 (2017) 407–418.

    Article  Google Scholar 

  7. Bharat Kumar CH, Anandakrishnan V, Mater Today Proc., 21 (2020) 622–627.

    Article  CAS  Google Scholar 

  8. Safari M, Mostaan H, Derakhshan E, J Mar Eng Technol, 19 (2020) 176–185.

    Article  Google Scholar 

  9. Guo C, Ying M, Dang H, Hu R, Chen F, Mater Res Express, 8 (2021).

  10. Zhang Y, Jing H, Xu L, Han Y, Zhao L, Xiao B, Mater Charact, 139 (2018) 279–292.

    Article  CAS  Google Scholar 

  11. Muralimohan CH, Ashfaq M, Ashiri R, Muthupandi V, Sivaprasad K, Metall Mater Trans A. 47 (2016) 347–59.

    Article  CAS  Google Scholar 

  12. Kangazian J, Shamanian M, Ashrafi A, Corrosion, 74 (2018) 1259–1271.

    Article  CAS  Google Scholar 

  13. Wu B, Pan Z, Li S, Cuiuri D, Ding D, Li H, Corros Sci., 137 (2018) 176–83.

    Article  CAS  Google Scholar 

  14. Silva CC, Afonso CRM, Ramirez AJ, Motta MF, Miranda HC, Farias JP, J Alloys Compd., 684 (2016) 628–642.

    Article  CAS  Google Scholar 

  15. Tang Y, Shen X, Qiao Y, Yang L, Chen J, Lu D, Zhang Z, J Mater Eng Perform, 30 (2021) 5506–5514.

    Article  CAS  Google Scholar 

  16. Zhang LN, Ojo OA, J Alloys Compd, 829 (2020).

  17. Juillet C, Oudriss A, Balmain J, Feaugas X, Pedraza F, Corros Sci., 142 (2018) 266–276.

    Article  CAS  Google Scholar 

  18. Kim HI, Park HS, Koo JM, Yang SH, Kim MY, Seok CS, Key Eng Mater., 353 (2007) 519–522.

    Article  Google Scholar 

  19. Abioye TE, McCartney DG, Clare AT, J Mater Process Technol., 217 (2015) 232–240.

    Article  CAS  Google Scholar 

  20. Aytekin H, Akçin Y, Mater Des., 50 (2013) 515–521.

    Article  CAS  Google Scholar 

  21. Kangazian J, Shamanian M, Trans Indian Inst Met., 71 (2018) 1747–1757.

    Article  CAS  Google Scholar 

  22. Ghaffari M, Vahedi Nemani A, Nasiri A, Addit Manuf., (2021) 102374.

  23. Vacchi S, Silva R, Kugelmeier CL, Beserra C, Martins J, Dainezi I, Alano JH, Mendes Filho AD, Ramos Osorio WR, Della Rovere CA, Metals, 11 (2021).

  24. Alcisto J, Enriquez A, Garcia H, Hinkson S, Steelman T, Silverman E, Valdovino P, Gigerenzer H, Foyos J, Ogren J, Dorey J, J Mater Eng Perform., 20 (2011) 203–212.

    Article  CAS  Google Scholar 

  25. Yangfan W, Xizhang C, Chuanchu S, Surf Coatings Technol., 374 (2019) 116–123.

    Article  Google Scholar 

  26. A.Evangeline, Sathiya P, Mater Res Express, 6 (2019).

  27. Dasari S, Sarkar A, Sharma A, Gwalani B, Choudhuri D, Soni V, Manda S, Samajdar I, Banerjee R, Acta Mater., 202 (2021) 448–62.

    Article  CAS  Google Scholar 

  28. Nagaraju KVV, Kumaran S, Rao TS, Mater Lett., 302 (2021).

  29. Cheepu M, Lee CI, Cho SM, Trans Indian Inst Met. 73 (2020) 1475–9.

    Article  CAS  Google Scholar 

  30. Dong B, Cai X, Xia Y, Lin S, Fan C, Chen F, Addit Manuf., 48 (2021) 102453.

    CAS  Google Scholar 

  31. Park JH, Cheepu M, Cho SM, Metals. 10 (2020) 1–11.

    CAS  Google Scholar 

  32. Wu BB, Wang ZQ, Wang XL, Zhao JX, Shang CJ, Misra RDK, Mater Sci Technol., 35 (2019) 1803–1814.

    CAS  Google Scholar 

  33. Ralston KD, Birbilis N, Davies CHJ, Scr Mater, 63 (2010) 1201–4.

    Article  CAS  Google Scholar 

  34. Siva Prasad M, Ashfaq M, Kishore Babu N, Sreekanth A, Sivaprasad K, Muthupandi V, Int J Miner Metall Mater, 24 (2017) 566–73.

    Article  CAS  Google Scholar 

  35. Tejonadha Babu K, Muthukumaran S, Bharat Kumar CH, Sathiya Narayanan C, Mater Sci Forum, 969 (2019) 490–495.

    Article  Google Scholar 

  36. Saikiran A, Hariprasad S, Arun S, Rameshbabu N, Surf Coatings Technol., 372 (2019) 239–251.

    Article  CAS  Google Scholar 

  37. Eghlimi A, Shamanian M, Raeissi K, Surf Coatings Technol., 244 (2014) 45–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Kumar Chigilipalli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigilipalli, B.K., Veeramani, A. Investigation of the Corrosion Behavior of Wire Arc Additively Manufactured Alloy 825. Trans Indian Inst Met 76, 279–286 (2023). https://doi.org/10.1007/s12666-022-02656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02656-9

Keywords

Navigation