Skip to main content
Log in

Curvature invariants in a binary black hole merger

  • Letter
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study curvature invariants in a binary black hole merger. It has been conjectured that one could define a quasi-local and foliation independent black hole horizon by finding the level–0 set of a suitable curvature invariant of the Riemann tensor. The conjecture is the geometric horizon conjecture and the associated horizon is the geometric horizon. We study this conjecture by tracing the level–0 set of the complex scalar polynomial invariant, \({\mathcal {D}}\), through a quasi-circular binary black hole merger. We approximate these level–0 sets of \({\mathcal {D}}\) with level–\(\varepsilon \) sets of \(|{\mathcal {D}}|\) for small \(\varepsilon \). We locate the local minima of \(|{\mathcal {D}}|\) and find that the positions of these local minima correspond closely to the level–\(\varepsilon \) sets of \(|{\mathcal {D}}|\) and we also compare with the level–0 sets of \(\text {Re}({\mathcal {D}})\). The analysis provides evidence that the level–\(\varepsilon \) sets track a unique geometric horizon. By studying the behaviour of the zero sets of \(\text {Re}({\mathcal {D}})\) and \(\text {Im}({\mathcal {D}})\) and also by studying the MOTSs and apparent horizons of the initial black holes, we observe that the level–\(\varepsilon \) set that best approximates the geometric horizon is given by \(\varepsilon = 10^{-3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Complete data for this work is presented in [49], which is available on https://dalspace.library.dal.ca/handle/10222/79721, and is also available from the corresponding author on reasonable request.

References

  1. Abbott, B.P., et al.: Binary black hole mergers in the first advanced ligo observing run. Phys. Rev. X 6, 041015 (2016)

    Google Scholar 

  2. Abbott, Benjamin P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)

    Article  ADS  Google Scholar 

  4. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12(4), 853–888 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ashtekar, A., Beetle, C., Lewandowski, J.: Geometry of generic isolated horizons. Class. Quantum Gravity 19(6), 1195–1225 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ashtekar, A., Campiglia, M., Shah, S.: Dynamical black holes: Approach to the final state. Physical Review D 88, 064045 (2013)

    Article  ADS  Google Scholar 

  7. Ashtekar, A., Galloway, G.J.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9(1), 1–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ashtekar, A., Krishnan, B.: Dynamical horizons: Energy, angular momentum, fluxes, and balance laws. Phys. Rev. Lett. 89, 261101 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ashtekar, Abhay, Krishnan, Badri: Dynamical horizons and their properties. Physical Review D 68(10), 104030 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativ. 7(1), 10. https://doi.org/10.12942/lrr-2004-10 (2004)

  11. Baker, J., Campanelli, M., Lousto, C.O.: The lazarus project: A pragmatic approach to binary black hole evolutions. Physical Review D 65(4), 044001 (2002)

    Article  ADS  Google Scholar 

  12. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Booth, I.: Black-hole boundaries. Can. J. Phys. 83(11), 1073–1099 (2005)

    Article  ADS  Google Scholar 

  14. Booth, I., Fairhurst, S.: Isolated, slowly evolving, and dynamical trapping horizons: Geometry and mechanics from surface deformations. Physical Review D 75(8), 084019 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Coley, A.: Classification of the weyl tensor in higher dimensions and applications. Class. Quantum Gravity 25(3), 033001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coley, A., Hervik, S.: Higher dimensional bivectors and classification of the weyl operator. Class. Quantum Gravity 27(1), 015002 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Coley, A., Hervik, S.: Discriminating the weyl type in higher dimensions using scalar curvature invariants. Gen. Relativ. Gravit. 43, 2199–2207 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Coley, A., Hervik, S., Pelavas, N.: Spacetimes characterized by their scalar curvature invariants. Class. Quantum Gravity 26(2), 025013 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Coley, A., Layden, N., McNutt, D.D.: An invariant characterization of the quasi-spherical szekeres dust models. Gen. Relativ. Gravit. 51(12), 164 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Coley, A., McNutt, D.D.: Horizon detection and higher dimensional black rings. Class. Quantum Gravity 34(3), 035008 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Coley, A., McNutt, D.D.: Identification of black hole horizons using scalar curvature invariants. Class. Quantum Gravity 35(2), 025013 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Coley, A., McNutt, D.D., Shoom, A.A.: Geometric horizons. Phys. Lett. B 771, 131–135 (2017)

    Article  ADS  MATH  Google Scholar 

  23. Coley, A., Milson, R., Pravda, V., Pravdová, A.: Classification of the weyl tensor in higher dimensions. Class. Quantum Gravity 21(7), L35–L41 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Coley, A., Milson, R., Pravda, V., Pravdová, A.: Vanishing scalar invariant spacetimes in higher dimensions. Class. Quantum Gravity 21(23), 5519–5542 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Coley, A., Peters, J.M., Schnetter, E.: Geometric horizons in binary black hole mergers. Class. Quantum Gravity 38(17), 17LT01 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cook, G.B.: Three-dimensional initial data for the collision of two black holes. ii. quasicircular orbits for equal-mass black holes. Physical Review D 50(8), 5025–5032 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Dreyer, O., Krishnan, B., Shoemaker, D., Schnetter, E.: Introduction to isolated horizons in numerical relativity. Physical Review D 67(2), 024018 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. Evans C., Ferguson D., Khamesra B., Laguna P., Shoemaker D.: Inside the final black hole: Puncture and trapped surface dynamics (2020)

  29. Gourgoulhon, E., Jaramillo, J.L.: A 3+1 perspective on null hypersurfaces and isolated horizons. Phys. Rep. 423(4–5), 159–294 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gupta, A., Krishnan, B., Nielsen, A.B., Schnetter, E.: Dynamics of marginally trapped surfaces in a binary black hole merger: Growth and approach to equilibrium. Physical Review D 97(8), 084028 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Hayward, Sean A.: General laws of black hole dynamics. Phys. Rev. D 49, 6467–6474 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Hayward, Sean A.: Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quant. Grav. 15, 3147–3162 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Hayward, Sean A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  34. Iozzo D.A.B., Khera N., Stein L.C., Mitman K., Boyle M., Deppe N., Hébert F., Kidder L.E., Moxon J., Pfeiffer H.P., et al.: Comparing remnant properties from horizon data and asymptotic data in numerical relativity. Phys. Rev. D, 103, 124029 (2021)

  35. Jaramillo JL, Macedo RP, Mösta P, Rezzolla L.: Towards a cross-correlation approach to strong-field dynamics in Black Hole spacetimes. AIP Conference Proceedings, 1458(1):158–173 (2012)

  36. Jaramillo JL.: An introduction to local black hole horizons in the 3+1 approach to general relativity. Int. J. Mod. Phys. 20(11). https://doi.org/10.1142/S0218271811020366 (2011)

  37. Jaramillo JL, Ansorg M, Vasset N.: Application of initial data sequences to the study of black hole dynamical trapping horizons. AIP Conference Proceedings, 1122(1):308–311, (May 2009)

  38. Jaramillo, J.L., Macedo, R.P., Mösta, P., Rezzolla, L.: Black-hole horizons as probes of black-hole dynamics. I. Post-merger recoil in head-on collisions. Physical Review D 85, 084030 (2012)

    Article  ADS  Google Scholar 

  39. Jaramillo, J.L., Macedo, R.P., Mösta, P., Rezzolla, L.: Black-hole horizons as probes of black-hole dynamics. II. Geometrical insights. Physical Review D 85, 084031 (2012)

    Article  ADS  Google Scholar 

  40. Kastor, D., Traschen, J.: Cosmological multi-black-hole solutions. Physical Review D 47(12), 5370–5375 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  41. Lewandowski, J., Pawlowski, T.: Quasi-local rotating black holes in higher dimension: geometry. Class. Quantum Gravity 22(9), 1573–1598 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim, B.C., Ott, C.D., Schnetter, E., Allen, G., Campanelli, M., Laguna, P.: The einstein toolkit: A community computational infrastructure for relativistic astrophysics. Class. Quantum Gravity 29(11), 115001 (2012)

    Article  ADS  MATH  Google Scholar 

  43. McNutt, D.D., Coley, A.: Geometric horizons in the kastor-traschen multi-black-hole solutions. Physical Review D 98(6), 064043 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. McNutt, D.D., MacCallum, M., Gregoris, D., Forget, A., Coley, A., Chavy-Waddy, P-C., Brooks, D.: Cartan invariants and event horizon detection, extended version (2017)

  45. Milson, R., Coley, A., Pravda, V., Pravdová, A.: Alignment and algebraically special tensors in lorentzian geometry. Int. J. Geometric Methods in Mod. Physics 02(01), 41–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mösta, P., Andersson, L., Metzger, J., Szilágyi, B., Winicour, J.: The merger of small and large black holes. Class. Quantum Gravity 32(23), 235003 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Nakao, K.-i, Shiromizu, T., Hayward, S.A.: Horizons of the kastor-traschen multi-black-hole cosmos. Physical Review D 52, 796–808 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  48. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Peters J.M., Coley, A., Schnetter, E.: A study of the geometric horizon conjecture as applied to a binary black hole merger. Master’s thesis, Dalhousie University, (2020)

  50. Pook-Kolb D., Birnholtz, O., Jaramillo, J.L., Krishnan, B., Schnetter, E.: Horizons in a binary black hole merger i: Geometry and area increase (2020)

  51. Pook-Kolb, D, Birnholtz, O., Jaramillo, J.L., Krishnan, B., Schnetter, E.: Horizons in a binary black hole merger ii: Fluxes, multipole moments and stability, (2020)

  52. Pook-Kolb, Daniel, Birnholtz, Ofek, Krishnan, Badri, Schnetter, Erik: Existence and stability of marginally trapped surfaces in black-hole spacetimes. Physical Review D 99(6), 064005 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  53. Pook-Kolb, D., Birnholtz, O., Krishnan, B., Schnetter, E.: Interior of a binary black hole merger. Physical Review Letters 123(17), 171102 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  54. Pook-Kolb, D., Birnholtz, O., Krishnan, B., Schnetter, E.: Self-intersecting marginally outer trapped surfaces. Physical Review D 100(8), 084044 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  55. Prasad, V., Gupta, A., Bose, S., Krishnan, B., Schnetter, E.: News from horizons in binary black hole mergers (2020)

  56. Schnetter, E., Hawley, S.H., Hawke, I.: Evolutions in 3d numerical relativity using fixed mesh refinement. Class. Quantum Gravity 21(6), 1465–1488 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Schnetter, E., Krishnan, B., Beyer, F.: Introduction to dynamical horizons in numerical relativity. Physical Review D 74(2), 024018 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  58. Senovilla, J. M. M.: Shear-free surfaces and distinguished DHs. 21st International Conference on General Relativity and Gravitation, (July, 2015)

  59. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact solutions of Einstein’s field equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  60. Thornburg, J.: Finding apparent horizons in numerical relativity. Physical Review D 54, 4899–4918 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  61. Thornburg, J.: Event and apparent horizon finders for 3+1 numerical relativity, (2005)

Download references

Acknowledgements

This work was supported financially by NSERC (AAC and ES). JMP would like to thank AAC for supervising his masters thesis and ES for numerical assistance and useful discussions, and the Perimeter Institute for Theoretical Physics for hospitality during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Peters.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, J.M., Coley, A. & Schnetter, E. Curvature invariants in a binary black hole merger. Gen Relativ Gravit 54, 65 (2022). https://doi.org/10.1007/s10714-022-02944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02944-1

Keywords

Navigation