Skip to main content
Log in

Direct analysis of lanthanum in extraction process by in-situ gamma spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

High sensitivity analytical techniques, such as ICP-MS, MIP-AES, XRF etc., in rare earth hydrometallurgy, have drastically developed products quality. However, these offline analysis methods may struggle to achieve real-time feedback. A potential alternative method was investigated to be a new usage of lanthanum analysis through detecting the 1435.8 keV gamma ray in situ, emitted by 138La. A high purity germanium gamma spectrometry was utilized to obtain the experimental minimum detectable concentration (MDC) and the sensitivity (S), which ranges from 4.66 to 4.99 g L−1 and (1.85 to 1.90) × 10−3 cps (g/L)−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khan AM, Bakar NKA, Bakar AFA, Ashraf MA (2017) Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review. Environ Sci Pollut Res 24:22764–22789. https://doi.org/10.1007/s11356-016-7427-1

    Article  CAS  Google Scholar 

  2. Chang Y, Wei Z, Chang X, Ma G, Meng L, Liu T, Yang L, Guo Y, Ma X (2021) Hollow hierarchically porous La2O3 with controllable multishells: a high-performance adsorbent for phosphate removal. Chem Eng J 421:127816. https://doi.org/10.1016/j.cej.2020.127816

    Article  CAS  Google Scholar 

  3. Fahad M, Bavanish B (2021) Tribological and ageing behavior of Az91D magnesium alloy fortified with nano lanthanum and nanoceria by stir casting for aviation application. Ind Lubr Tribol 73:635–641. https://doi.org/10.1108/ILT-12-2020-0475

    Article  Google Scholar 

  4. Lalaoua S, Bouzabata B, Alleg S, Djekoun A, Shmool D (2020) Structure evolution of La(OH)3/Fe composite during ball milling. J Nano Res 65:123–134. https://doi.org/10.4028/www.scientific.net/JNanoR.65.123

    Article  CAS  Google Scholar 

  5. Lide DR (2004) CRC handbook of chemistry and physics, vol 85. CRC Press, Boca Raton, FL

    Google Scholar 

  6. Lu X, Xu J, Yang L, Zhou C, Zhao Y, Yuan C, Li Q, Chen G, Wang H (2016) Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. J Materiomics 2:87–93. https://doi.org/10.1016/j.jmat.2016.02.001

    Article  Google Scholar 

  7. Ogata H, Fukagawa M, Hirakata H, Kagimura T, Fukushima M, Akizawa T, for the LANDMARK Investigators and Committees (2021) Effect of treating hyperphosphatemia with lanthanum carbonate vs calcium carbonate on cardiovascular events in patients with chronic kidney disease undergoing hemodialysis: the LANDMARK randomized clinical trial. JAMA 325:1946–1954. https://doi.org/10.1001/jama.2021.4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang T, Li H, Zhao C, Yu J, Hu Y, Cui L, He H (2012) Preparation of anhydrous lanthanum bromide for scintillation crystal growth. J Rare Earths 30:1245–1248. https://doi.org/10.1016/S1002-0721(12)60214-2

    Article  CAS  Google Scholar 

  9. Habashi F (2013) Extractive metallurgy of rare earths. Can Metall Q 52:224–233. https://doi.org/10.1179/1879139513Y.0000000081

    Article  CAS  Google Scholar 

  10. Bicki R, Antoniak-Jurak K, Michalska K, Franczyk E, Konkol M, Kowalik P, Pańczyk M, Ryczkowski J, Słowik G, Borowiecki T (2021) The effect of La2O3 and CeO2 modifiers on properties of Ni–Al catalysts for LNG prereforming. Int J Hydrogen Energy 46:11664–11676. https://doi.org/10.1016/j.ijhydene.2021.01.038

    Article  CAS  Google Scholar 

  11. Chesalkin A, Martaus A, Averina JM, Men’shikov VV (2019) La–Ni based alloy modification by Ce and Fe for the next hydrogen storage in low-temperature metal hydrides. Russ J Non-Ferrous Met 60:492–498. https://doi.org/10.3103/S1067821219050092

    Article  Google Scholar 

  12. Zhou J, Meng X, Zhang R, Liu H, Liu Z (2021) Progress on electrodeposition of rare earth metals and their alloys. Electrocatalysis 12:628–640. https://doi.org/10.1007/s12678-021-00688-1

    Article  CAS  Google Scholar 

  13. Chau YP, Lu KS (1995) Investigation of the blood-ganglion barrier properties in rat sympathetic ganglia by using lanthanum ion and horseradish peroxidase as tracers. Cells Tissues Organs 153:135–144. https://doi.org/10.1159/000313647

    Article  CAS  Google Scholar 

  14. Patnaik P (2003) Handbook of inorganic chemicals, vol 529. McGraw-Hill, New York

    Google Scholar 

  15. Huang X-W, Long Z-Q, Wang L-S, Feng Z-Y (2015) Technology development for rare earth cleaner hydrometallurgy in China. Rare Met 34:215–222. https://doi.org/10.1007/s12598-015-0473-x

    Article  CAS  Google Scholar 

  16. Chen Z, Sang F-N, Xu J-H, Luo G-S, Wang Y-D (2018) Efficient enrichment and recovery of rare earth elements with low concentration by membrane dispersion micro-extractors. Chem Eng Process - Process Intensification 127:127–135. https://doi.org/10.1016/j.cep.2018.03.004

    Article  CAS  Google Scholar 

  17. He Q, Qiu J, Chen J, Zan M, Xiao Y (2022) Progress in green and efficient enrichment of rare earth from leaching liquor of ion adsorption type rare earth ores. J Rare Earths 40:353–364. https://doi.org/10.1016/j.jre.2021.09.011

    Article  CAS  Google Scholar 

  18. Zhenyue Z, Zhengyan H, Zhigao X, Junxia Y, Yuefei Z, Ruan C (2016) Rare earth partitioning characteristics of china rare earth ore. Chin Rare Earths 37:121–127. https://doi.org/10.16533/J.CNKI.15-1099/TF.201601020

    Article  CAS  Google Scholar 

  19. Gorbatenko AA, Revina EI (2015) A review of instrumental methods for determination of rare earth elements. Inorg Mater 51:1375–1388. https://doi.org/10.1134/S0020168515140058

    Article  CAS  Google Scholar 

  20. Whitty-Léveillé L, Turgeon K, Bazin C, Larivière D (2017) A comparative study of sample dissolution techniques and plasma-based instruments for the precise and accurate quantification of REEs in mineral matrices. Anal Chim Acta 961:33–41. https://doi.org/10.1016/j.aca.2017.01.045

    Article  CAS  PubMed  Google Scholar 

  21. Balaram V (2020) Microwave plasma atomic emission spectrometry (MP-AES) and its applications—a critical review. Microchem J 159:105483. https://doi.org/10.1016/j.microc.2020.105483

    Article  CAS  Google Scholar 

  22. Zinin DS, Bushuev NN, Kuznetsov VV (2017) X-ray fluorescence determination of La, Ce, Pr, Nd, and Sm in industrial sediments of calcium sulfate using linear regression analysis. J Anal Chem 72:279–288. https://doi.org/10.1134/S1061934817030157

    Article  CAS  Google Scholar 

  23. Asay RH, Chase DL, McGinnis MD, Oltmans DL, Sattler MS (1996) On-line analysis of fuel integrity. Google Patents

  24. Çınar H, Altundaş S, Çelik N, Maden N (2017) In situ gamma ray measurements for deciphering of radioactivity level in Sarıhan pluton area of northeastern Turkey. Arab J Geosci 10:435. https://doi.org/10.1007/s12517-017-3225-4

    Article  CAS  Google Scholar 

  25. Akingboye AS, Ogunyele AC, Jimoh AT, Adaramoye OB, Adeola AO, Ajayi T (2021) Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environ Earth Sci 80:228. https://doi.org/10.1007/s12665-021-09516-7

    Article  CAS  Google Scholar 

  26. Li B, Wang N, Wan J, Xiong S, Liu H, Li S, Zhao R (2016) In-situ gamma-ray survey of rare-earth tailings dams—a case study in Baotou and Bayan Obo Districts, China. J Environ Radioact 151:304–310. https://doi.org/10.1016/j.jenvrad.2015.10.027

    Article  CAS  PubMed  Google Scholar 

  27. Eichholz GG, Poston JW (2018) Principles of nuclear radiation detection. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781351075077

    Book  Google Scholar 

  28. Gorzkiewicz K, Mietelski JW, Kierepko R, Brudecki K (2019) Low-background, digital gamma-ray spectrometer with BEGe detector and active shield: commissioning, optimisation and software development. J Radioanal Nucl Chem 322:1311–1321. https://doi.org/10.1007/s10967-019-06853-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (12105043) and Opening Fund of Provincial Key Lab of Applied Nuclear Technology in Geosciences (gnzds201911). We are grateful to Dr. Qi Zeng in EUCT for his technical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankun Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in publishing this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Xing, Y., Ge, L. et al. Direct analysis of lanthanum in extraction process by in-situ gamma spectrometry. J Radioanal Nucl Chem 331, 3807–3817 (2022). https://doi.org/10.1007/s10967-022-08399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08399-7

Keywords

Navigation