Skip to main content
Log in

Numerical experiments of partial-depth colliding gravity currents using LES

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The collision of two opposing, horizontal gravity currents is investigated numerically using Large Eddy Simulation (LES). The classical lock-exchange configuration is considered for symmetric collision (currents with same densities and heights). A partial-depth setup is used which is considered to simulate better the collision in deep air column of atmosphere. LES results are validated using available experimental and DNS data (Fragoso et al. in J Fluid Mech 734:1–10, https://doi.org/10.1017/jfm.2013.475; Frantz et al. in Comput Fluids, 2021. https://doi.org/10.1016/j.compfluid.2021.104902) for the classical full depth lock-exchange gravity current. Numerical experiments are performed considering the effects of D/H (D is the height of dense fluid in the lock, H is the tank height) and Grashof number (Gr) on the collision characteristics. The former varies from 0.25 to 1.0 and the latter from \(10^6\) to \(10^{12}\). Maximum vertical displacement and maximum vertical velocity increase with decreasing D/H from 1.0 up to 0.5. They remain constant for \(D/H \le 0.5\). Maximum vertical displacement decreases with Gr number opposite to the corresponding variation of the maximum equivalent height. Maximum vertical velocity decreases with increasing Gr number, due to increased turbulence. For \(Gr \ge 5 \times 10^8\) (a) the maximum vertical displacement is almost constant (equal to 1.4D), (b) the temporal evolution of energies is approximately the same. At the time of maximum height the maximum potential energy and the minimum kinetic energy are approximately \(80\%\) and \(15\%\) of the initial potential energy, respectively, and (c) a region with intense turbulence and mixing of less dense fluid (\(C\le 0.6\), C is the concentration) is formed after the occurrence of maximum height in the middle of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data can be provided upon request.

References

  1. Simpson JE (1997) Gravity currents in the environment and the laboratory, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. Adduce C, Sciortino G, Proietti S (2012) Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment. J Hydraul Eng 138(2):111–121. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000484

    Article  Google Scholar 

  3. Dai A, Huang YL (2020) Experiments on gravity currents propagating on unbounded uniform slopes. Environ Fluid Mech 20(6):1637–1662. https://doi.org/10.1007/s10652-020-09758-2

    Article  Google Scholar 

  4. De Falco MC, Adduce C, Negretti ME et al (2021) On the dynamics of quasi-steady gravity currents flowing up a slope. Adv Water Resour 147(103):791. https://doi.org/10.1016/j.advwatres.2020.103791

    Article  Google Scholar 

  5. Hacker J, Linden PF, Dalziel SB (1996) Mixing in lock-release gravity currents. Dyn Atmosph Oceans 24(1–4):183–195. https://doi.org/10.1016/0377-0265(95)00443-2

    Article  Google Scholar 

  6. Han D, Xiong J, Xie X et al (2021) Effects of emergent and submerged rigid vegetation configurations on gravity current dynamics. Environ Fluid Mech 21(5):1165–1187. https://doi.org/10.1007/s10652-021-09814-5

    Article  Google Scholar 

  7. Ikeda J, Testik FY (2021) Propagation, deposition, and suspension characteristics of constant-volume particle-driven gravity currents. Environ Fluid Mech 21(1):177–208. https://doi.org/10.1007/s10652-020-09756-4

    Article  Google Scholar 

  8. Rottman JW, Simpson JE (1983) Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J Fluid Mech 135:95–110. https://doi.org/10.1017/S0022112083002979

    Article  Google Scholar 

  9. Nogueira HI, Adduce C, Alves E et al (2014) Dynamics of the head of gravity currents. Environ Fluid Mech 14(2):519–540. https://doi.org/10.1007/s10652-013-9315-2

    Article  Google Scholar 

  10. Marino BM, Thomas LP, Linden PF (2005) The front condition for gravity currents. J Fluid Mech 536:49–78. https://doi.org/10.1017/S0022112005004933

    Article  Google Scholar 

  11. Sher D, Woods AW (2015) Gravity currents: entrainment, stratification and self-similarity. J Fluid Mech 784:130–162. https://doi.org/10.1017/jfm.2015.576

    Article  Google Scholar 

  12. Frantz RA, Deskos G, Laizet S, et al (2021) High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach. Comput Fluids. https://doi.org/10.1016/j.compfluid.2021.104902

  13. Cantero MI, Lee JR, Balachandar S et al (2007) On the front velocity of gravity currents. J Fluid Mech 586:1–39. https://doi.org/10.1017/S0022112007005769

    Article  Google Scholar 

  14. Härtel C, Meiburg E, Necker F (2000) Analysis and direct numerical simulation of the flow at a gravity-current head. part 1. Flow topology and front speed for slip and no-slip boundaries. J Fluid Mech 418:189–212. https://doi.org/10.1017/S0022112000001221

    Article  Google Scholar 

  15. La Rocca M, Prestininzi P, Adduce C et al (2013) Lattice Boltzmann simulation of 3D gravity currents around obstacles. Int J Offshore Polar Eng 23(03):178–185

    Google Scholar 

  16. Necker F, Härtel C, Kleiser L et al (2005) Mixing and dissipation in particle-driven gravity currents. J Fluid Mech. https://doi.org/10.1017/S0022112005006932

  17. Tokyay T, Constantinescu G (2015) The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents. Phys Fluids 27(5):056601. https://doi.org/10.1063/1.4919384

    Article  Google Scholar 

  18. Tokyay T (2021) Effect of rotational ambient, discharge and inflow density on the formation and evolution of a density-driven current over a steep slope. Environ Fluid Mech 21(2):383–403. https://doi.org/10.1007/s10652-021-09778-6

    Article  Google Scholar 

  19. Ottolenghi L, Adduce C, Inghilesi R et al (2016) Entrainment and mixing in unsteady gravity currents. J Hydraul Res 54(5):541–557. https://doi.org/10.1080/00221686.2016.1174961

    Article  Google Scholar 

  20. Ooi SK, Constantinescu G, Weber L (2009) Numerical simulations of lock-exchange compositional gravity current. J Fluid Mech 635:361–388. https://doi.org/10.1017/S0022112009007599

    Article  Google Scholar 

  21. Pelmard J, Norris S, Friedrich H (2018) LES grid resolution requirements for the modelling of gravity currents. Comput Fluids 174:256–270. https://doi.org/10.1016/j.compfluid.2018.08.005

    Article  Google Scholar 

  22. Huppert HE, Simpson JE (1980) The slumping of gravity currents. J Fluid Mech 99(4):785–799. https://doi.org/10.1017/S0022112080000894

    Article  Google Scholar 

  23. Von Kármán T (1940) The engineer grapples with nonlinear problems. Bull Am Math Soc. https://doi.org/10.1090/S0002-9904-1940-07266-0

  24. Benjamin TB (1968) Gravity currents and related phenomena. J Fluid Mech 31(2):209–248. https://doi.org/10.1017/S0022112068000133

    Article  Google Scholar 

  25. Shin JO, Dalziel SB, Linden PF (2004) Gravity currents produced by lock exchange. J Fluid Mech 521(1968):1–34. https://doi.org/10.1017/S002211200400165X

    Article  Google Scholar 

  26. Linden P, Chassignet E, Cenedese C et al (2012) Gravity currents-theory and laboratory experiments. Buoyancy Driv Flows 13:51. https://doi.org/10.1017/CBO9780511920196.002

    Article  Google Scholar 

  27. Fragoso AT, Patterson MD, Wettlaufer JS (2013) Mixing in gravity currents. J Fluid Mech 734:1–10. https://doi.org/10.1017/jfm.2013.475

    Article  Google Scholar 

  28. De Falco MC, Ottolenghi L, Adduce C (2020) Dynamics of Gravity Currents Flowing Up a Slope and Implications for Entrainment. J Hydraul Eng. https://doi.org/10.1061/(asce)hy.1943-7900.0001709

  29. De Falco MC, Adduce C, Cuthbertson A et al (2021) Experimental study of uni- And bi-directional exchange flows in a large-scale rotating trapezoidal channel. Phys Fluids 33(3):36602. https://doi.org/10.1063/5.0039251

    Article  Google Scholar 

  30. Mahmodinia S, Javan M (2021) Vortical structures, entrainment and mixing process in the lateral discharge of the gravity current. Environ Fluid Mech 21(5):1035–1067

    Article  Google Scholar 

  31. Zordan J, Schleiss AJ, Franca MJ (2018) Structure of a dense release produced by varying initial conditions. Environ Fluid Mech 18(5):1101–1119. https://doi.org/10.1007/s10652-018-9586-8

    Article  Google Scholar 

  32. Cenedese C, Adduce C (2008) Mixing in a density-driven current flowing down a slope in a rotating fluid. J Fluid Mech 604:369–388. https://doi.org/10.1017/S0022112008001237

    Article  Google Scholar 

  33. Chawdhary S, Khosronejad A, Christodoulou G et al (2018) Large eddy simulation of density current on sloping beds. Int J Heat Mass Transfer 120:1374–1385. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.063

    Article  Google Scholar 

  34. Inghilesi R, Adduce C, Lombardi V et al (2018) Axisymmetric three-dimensional gravity currents generated by lock exchange. J Fluid Mech 851:507–544. https://doi.org/10.1017/jfm.2018.500

    Article  Google Scholar 

  35. Tokyay T, Constantinescu G, Meiburg E (2012) Tail structure and bed friction velocity distribution of gravity currents propagating over an array of obstacles. J Fluid Mech. https://doi.org/10.1017/jfm.2011.542

  36. Intrieri JM, Bedard AJ, Hardesty RM (1990) Details of colliding thunderstorm outflows as observed by Doppler lidar. J Atmosph Sci. https://doi.org/10.1175/1520-0469(1990)047<1081:DOCTOA>2.0.CO;2

  37. Kingsmill DE, Crook NA (2003) An observational study of atmospheric bore formation from colliding density currents. Month Weath Rev. https://doi.org/10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2

  38. Lapworth A (2005) Collision of two sea-breeze fronts observed in Wales. Weather. https://doi.org/10.1256/wea.92.05

  39. Fernando HJ, Pardyjak ER, Di Sabatino S, et al (2015) The materhorn : unraveling the intricacies of mountain weather. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-13-00131.1

  40. van der Wiel K, Gille ST, Llewellyn Smith SG et al (2017) Characteristics of colliding sea breeze gravity current fronts: a laboratory study. Quart J R Meteorol Soc 143(704):1434–1441. https://doi.org/10.1002/qj.3015

    Article  Google Scholar 

  41. Zhong Q, Hussain F, Fernando HJ (2018) Quantification of turbulent mixing in colliding gravity currents. J Fluid Mech 851:125–147. https://doi.org/10.1017/jfm.2018.488

    Article  Google Scholar 

  42. Okon SU, Zhong Q, He Z (2021) Experimental study on the vertical motion of colliding gravity currents. Phys Fluids 10(1063/5):0031738. https://doi.org/10.1063/5.0031738

    Article  Google Scholar 

  43. Cafaro C, Rooney GG (2018) Characteristics of colliding density currents: A numerical and theoretical study. Quarterly Journal of the Royal Meteorological Society 144(715). https://doi.org/10.1002/qj.3337

  44. De Falco MC, Adduce C, Maggi MR (2021) Gravity currents interacting with a bottom triangular obstacle and implications on entrainment. Adv Water Resourc 154(103):967. https://doi.org/10.1016/j.advwatres.2021.103967

    Article  Google Scholar 

  45. Lane-Serff GF, Beal LM, Hadfield TD (1995) Gravity current flow over obstacles. J Fluid Mech 292:39–53. https://doi.org/10.1017/S002211209500142X

    Article  Google Scholar 

  46. Rottman JW, Simpson JE, Hunt JC et al (1985) Unsteady gravity current flows over obstacles: some observations and analysis related to the phase II trials. J Hazard Mater 11(C):325–340. https://doi.org/10.1016/0304-3894(85)85044-5

    Article  Google Scholar 

  47. Marleau LJ, Flynn MR, Sutherland BR (2014) Gravity currents propagating up a slope. Phys Fluids 26(46):605. https://doi.org/10.1063/1.4872222

    Article  Google Scholar 

  48. Ottolenghi L, Adduce C, Roman F et al (2017) Analysis of the flow in gravity currents propagating up a slope. Ocean Model 115:1–13. https://doi.org/10.1016/j.ocemod.2017.05.001

    Article  Google Scholar 

  49. Zemach T, Ungarish M, Martin A et al (2019) On gravity currents of fixed volume that encounter a down-slope or up-slope bottom. Phys Fluids 31(9):96604. https://doi.org/10.1063/1.5121290

    Article  Google Scholar 

  50. Shin JO (2002) Colliding gravity currents. PhD thesis, University of Cambridge

  51. Constantinescu G (2014) LES of lock-exchange compositional gravity currents: a brief review of some recent results. Environ Fluid Mech 14(2):295–317. https://doi.org/10.1007/s10652-013-9289-0

    Article  Google Scholar 

  52. Meiburg E, Radhakrishnan S, Nasr-Azadani M (2015) Modeling gravity and turbidity currents: computational approaches and challenges. Appl Mech Rev 67(4):1–23. https://doi.org/10.1115/1.4031040

    Article  Google Scholar 

  53. Ottolenghi L, Adduce C, Roman F et al (2020) Large eddy simulations of solitons colliding with intrusions. Phys Fluids 32(9):96606. https://doi.org/10.1063/5.0021196

    Article  Google Scholar 

  54. Steenhauer K, Tokyay T, Constantinescu G (2017) Dynamics and structure of planar gravity currents propagating down an inclined surface. Phys Fluids. https://doi.org/10.1063/1.4979063

  55. Pelmard J, Norris S, Friedrich H (2020) Statistical characterisation of turbulence for an unsteady gravity current. J Fluid Mech. https://doi.org/10.1017/jfm.2020.528

  56. Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Month Weath Rev 91(3):99–164

    Article  Google Scholar 

  57. Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4(3):633–635. https://doi.org/10.1063/1.858280

    Article  Google Scholar 

  58. OpenCFD (2019) OpenFOAM—the open source CFD toolbox—user’s guide v1906. OpenCFD Ltd., UK

  59. Winters KB, Lombard PN, Riley JJ et al (1995) Available potential energy and mixing in density-stratified fluids. J Fluid Mech 289(C5):115–128. https://doi.org/10.1017/S002211209500125X

    Article  Google Scholar 

  60. Komen EM, Camilo LH, Shams A et al (2017) A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows. J Comput Phys 345:565–595. https://doi.org/10.1016/j.jcp.2017.05.030

    Article  Google Scholar 

  61. Celik IB, Cehreli ZN, Yavuz I (2005) Index of resolution quality for large eddy simulations. J Fluids Eng 127(5):949–958. https://doi.org/10.1115/1.1990201

    Article  Google Scholar 

  62. Chow FK, Moin P (2003) A further study of numerical errors in large-eddy simulations. J Comput Phys 184(2):366–380. https://doi.org/10.1016/S0021-9991(02)00020-7

    Article  Google Scholar 

  63. Adduce C, Maggi MR, De Falco MC (2022) Non-intrusive density measurements in gravity currents interacting with an obstacle. Acta Geophys 1:3. https://doi.org/10.1007/s11600-021-00709-z

    Article  Google Scholar 

Download references

Acknowledgements

Results presented in this work have been produced using the Aristotle University of Thessaloniki (AUTh) High Performance Computing Infrastructure and Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Kokkinos.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To derive the energy budget the momentum equation (1b) is rewritten considering the material derivative for the terms on the LHS, the shear tensor (\(\tau _{ij}\)) for the diffusion term and the static pressure for the pressure term,

$$\begin{aligned} \begin{aligned} \frac{Du_i}{Dt}&=-\frac{1}{\rho _0}\frac{\partial }{\partial x_i}\left( p-\rho g_j x_j \right) + \frac{\partial \tau _{ij}}{\partial x_j}-g_jx_j\frac{\partial }{\partial x_i}(\frac{\rho }{\rho _0}) \Rightarrow \\ \frac{Du_i}{Dt}&=-\frac{1}{\rho _0}\frac{\partial p}{\partial x_i} + \frac{\partial \tau _{ij}}{\partial x_j}+ \frac{1}{\rho _0} \left( \frac{\partial (\rho g_j x_j)}{\partial x_i}-g_j x_j\frac{\partial \rho }{\partial x_i} \right) \Rightarrow \\ \frac{Du_i}{Dt}&=-\frac{1}{\rho _0}\frac{\partial p}{\partial x_i} + \frac{\partial \tau _{ij}}{\partial x_j}+ \frac{\rho }{\rho _0}g_i \end{aligned} \end{aligned}$$
(A.1)

Multiplying by \(u_i\) and integrating over the whole domain V Eq. (A.1), reads

$$\begin{aligned} \begin{aligned}&u_i\frac{Du_i}{Dt}=-u_i\frac{1}{\rho _0}\frac{\partial p}{\partial x_i}+u_i\frac{\partial \tau _{ij}}{\partial x_j}+ u_i \left( \frac{\rho }{\rho _0} \right) g_i \Rightarrow \\&\frac{D}{Dt} \left( \frac{1}{2}u_iu_i \right) = - \frac{1}{\rho _0} \frac{\partial u_ip}{\partial x_i}+ u_i\frac{\partial \tau _{ij}}{\partial x_j}+\left( \frac{\rho }{\rho _0} \right) u_ig_i \Rightarrow \\&\int _V \frac{D}{Dt} \left( \frac{1}{2} u_iu_i \right) \,dV= -\int _V \frac{1}{\rho _0}\frac{\partial u_ip}{\partial x_i} \,dV +\int _V u_i \frac{\partial \tau _{ij}}{\partial x_j} \,dV +\int _V \left( \frac{\rho }{\rho _0} \right) g_i u_i \,dV \Rightarrow \\&\begin{aligned} \frac{D}{Dt} \left( \int _V \frac{1}{2} u_iu_i \right) \,dV&= - \frac{1}{\rho _0}\int _V \frac{\partial u_ip}{\partial x_i} \,dV +\int _V \frac{\partial u_i \tau _{ij}}{\partial x_j} \,dV - \int _V \tau _{ij} \frac{\partial u_i}{\partial x_j} \,dV \\&+\int _V \left( \frac{\rho }{\rho _0} \right) g_i u_i \,dV \end{aligned} \end{aligned} \end{aligned}$$

Considering the Gauss theorem the first and the second term on the RHS are equal to zero since the velocity components are zero on all the non-periodic boundaries. Hence,

$$\begin{aligned} \frac{dE_k}{dt}= - \int _V \tau _{ij} \frac{\partial u_i}{\partial x_j} \,dV +\int _V \left( \frac{\rho }{\rho _0} \right) g_i u_i \,dV \end{aligned}$$
(A.2)

Equation (3b) is differentiated considering that the effects of concentration diffusion on potential energy are negligible, which means \(DC/Dt\approx 0\) or \(D(\rho /\rho _0)/Dt\approx 0\). In addition, \(g_iu_i=-|g |v\) where v is the vertical component of velocity. Hence,

$$\begin{aligned} \begin{aligned} \frac{dE_p}{dt}&= \int _V \left( \frac{\rho }{\rho _0} |g |\right) \frac{Dy}{Dt} \,dV + \int _V \frac{D}{Dt} \left( \frac{\rho }{\rho _0} \right) |g |y \,dV \\&=-\int _V \frac{\rho }{\rho _0} g_i u_i \,dV \end{aligned} \end{aligned}$$
(A.3)

Replacing Eq. (A.3) in Eq. (A.2) gives the Eq. (4) presented in Sect. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokkinos, A., Prinos, P. Numerical experiments of partial-depth colliding gravity currents using LES. Environ Fluid Mech 22, 1081–1105 (2022). https://doi.org/10.1007/s10652-022-09879-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-022-09879-w

Keywords

Navigation