Skip to main content
Log in

Predictors of Treatment Change Among Patients with Rheumatoid Arthritis Treated with TNF Inhibitors as First-Line Biologic Agent in the USA: A Cohort Study from Longitudinal Electronic Health Records

  • Original Research Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Background

Previous observational studies utilizing administrative claims data have largely been unable to consider clinical factors that may be related to patterns of drug use among patients with rheumatoid arthritis (RA).

Objective

To understand predictors of treatment changes following initiation of a tumor necrosis factor inhibitor (TNFi) using nation-wide electronic health record (EHR) data in the USA.

Methods

The Optum Immunology Condition EHR data (01/01/2011–09/30/2019) was used to identify a population of adult patients with RA initiating a TNFi as the first line biologic disease-modifying anti-rheumatic drug (DMARD). The primary outcome was any treatment change during the 1-year post-index period defined as cycling to a different TNFi or switching to non-TNFi biologic or targeted synthetic DMARDs. Secondary outcomes were the individual components of TNFi cycling and switching, examined separately. To identify predictors of DMARD treatment changes, we used a least absolute shrinkage and selection operator (LASSO) regression model. Model c-statistics and odds ratios (ORs, 95% confidence intervals (CIs)) of predictors were reported.

Results

We identified 24,871 patients with RA who initiated a TNFi. The mean age was 55.5 (± 13.7) years and 77.2% were female. Among the TNFi initiators, 22.2% experienced TNFi cycling or switching during the 1-year follow-up time. Predictors that are associated with higher likelihood of TNFi cycling or switching included female gender (OR: 1.26, 95% CI: 1.16–1.36) and glucocorticoid use (OR: 1.30, 95% CI: 1.21–1.40). In contrast, inflammatory bowel disease (OR: 0.62, 95% CI: 0.48–0.78), psoriasis (OR: 0.82, 95% CI: 0.70–0.95), recent use of methotrexate (OR: 0.89, 95% CI: 0.81–0.97), and vitamin D intake (OR: 0.92, 95% CI: 0.85–0.99) were negatively associated with TNFi cycling or switch.

Conclusions

Gender, glucocorticoid use, inflammatory bowel disease, psoriasis, and vitamin D intake were identified as significant predictors of TNFi cycling or switching for TNFi initiators in the RA population. Predicting treatment change remains challenging even with large detailed EHR data.

Plain Language Summary

This study aimed to identify key determinants of treatment changes among patients with rheumatoid arthritis (RA) initiating a tumor necrosis factor inhibitor (TNFi) as their first-line biologic disease-modifying antirheumatic drug (DMARD) in routine care settings using a US nation-wide longitudinal electronic health record (EHR). Among 24,871 patients with RA who initiated a TNFi, 22.2% experienced TNFi cycling or switching during the 1-year follow-up time. Female patients and those who used glucocorticoids were more likely to experience TNFi cycling or switching, whereas inflammatory bowel disease, psoriasis, recent methotrexate use, and vitamin D intake were negatively associated with the outcome. However, predicting treatment change remains challenging even with larger detailed EHR data potentially due to unmeasured factors such as prescriber’s preference or patient’s belief in the medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunter TM, Boytsov NN, Zhang X, Schroeder K, Michaud K, Araujo AB. Prevalence of rheumatoid arthritis in the United States adult population in healthcare claims databases, 2004–2014. Rheumatol Int. 2017;37(9):1551–7.

    Article  PubMed  Google Scholar 

  2. Helmick CG, Felson DT, Lawrence RC, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheumatol. 2008;58(1):15–25.

    Article  Google Scholar 

  3. Kim SC, Yelin E, Tonner C, Solomon DH. Changes in use of disease-modifying antirheumatic drugs for rheumatoid arthritis in the United States during 1983–2009. Arthritis Care Res (Hobok). 2013;65(9):1529–33.

    Article  CAS  Google Scholar 

  4. Desai RJ, Solomon DH, Jin Y, Liu J, Kim SC. Temporal trends in use of biologic DMARDs for rheumatoid arthritis in the United States: a cohort study of publicly and privately insured patients. J Manag Care Spec Pharm. 2017;23(8):809–14.

    PubMed  Google Scholar 

  5. Fraenkel L, Bathon JM, England BR, et al. 2021 American College of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 2021;73(7):924–39.

    Article  Google Scholar 

  6. Uson J, Rodriguez-García SC, Castellanos-Moreira R, et al. EULAR recommendations for intra-articular therapies. Ann Rheum Dis. 2021;2021:annrheumdis-2021-220266.

  7. Wei W, Knapp K, Wang L, et al. Treatment persistence and clinical outcomes of tumor necrosis factor inhibitor cycling or switching to a new mechanism of action therapy: real-world observational study of rheumatoid arthritis patients in the United States with prior tumor necrosis factor inhibitor therapy. Adv Ther. 2017;34(8):1936–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meissner B, Trivedi D, You M, Rosenblatt L. Switching of biologic disease modifying anti-rheumatic drugs in patients with rheumatoid arthritis in a real world setting. J Med Econ. 2014;17(4):259–65.

    Article  PubMed  Google Scholar 

  9. Harnett J, Wiederkehr D, Gerber R, Gruben D, Koenig A, Bourret J. Real-world evaluation of TNF-inhibitor utilization in rheumatoid arthritis. J Med Econ. 2016;19(2):91–102.

    Article  PubMed  Google Scholar 

  10. Shahabi A, Shafrin J, Zhao L, et al. The economic burden of switching targeted disease-modifying anti-rheumatic drugs among rheumatoid arthritis patients. J Med Econ. 2019;22(4):350–8.

    Article  PubMed  Google Scholar 

  11. Kim G, Barner JC, Rascati K, Richards K. Factors associated with the initiation of biologic disease-modifying antirheumatic drugs in Texas Medicaid patients with rheumatoid arthritis. J Manag Care Spec Pharm. 2015;21(5):401–7.

    PubMed  Google Scholar 

  12. Oladapo A, Barner JC, Lawson KA, et al. Medication effectiveness with the use of tumor necrosis factor inhibitors among Texas Medicaid patients diagnosed with rheumatoid arthritis. J Manag Care Spec Pharm. 2014;20(7):657–67.

    PubMed  Google Scholar 

  13. Rashid N, Lin AT, Aranda G Jr, et al. Rates, factors, reasons, and economic impact associated with switching in rheumatoid arthritis patients newly initiated on biologic disease modifying anti-rheumatic drugs in an integrated healthcare system. J Med Econ. 2016;19(6):568–75.

    Article  PubMed  Google Scholar 

  14. Hetland ML. DANBIO: a nationwide registry of biological therapies in Denmark. Clin Exp Rheumatol. 2005;23(5 Suppl 39):S205-207.

    CAS  PubMed  Google Scholar 

  15. van Vollenhoven RF, Askling J. Rheumatoid arthritis registries in Sweden. Clin Exp Rheumatol. 2005;23(5 Suppl 39):S195-200.

    PubMed  Google Scholar 

  16. Kremer JM. The Corrona US registry of rheumatic and autoimmune diseases. Clin Exp Rheumatol. 2016;34(5 Suppl 101):S96-s99.

    PubMed  Google Scholar 

  17. Hetland ML, Lindegaard HM, Hansen A, et al. Do changes in prescription practice in patients with rheumatoid arthritis treated with biological agents affect treatment response and adherence to therapy? Results from the nationwide Danish DANBIO Registry. Ann Rheum Dis. 2008;67(7):1023–6.

    Article  CAS  PubMed  Google Scholar 

  18. Pappas DA, Litman HJ, Lesperance T, et al. Persistence on biologic DMARD monotherapy after achieving rheumatoid arthritis disease control on combination therapy: retrospective analysis of corrona registry data. Rheumatol Int. 2021;41(2):381–90.

    Article  CAS  PubMed  Google Scholar 

  19. Neovius M, Arkema EV, Olsson H, et al. Drug survival on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and infliximab. Ann Rheum Dis. 2015;74(2):354–60.

    Article  CAS  PubMed  Google Scholar 

  20. Bergman M, Zhou L, Patel P, Sawant R, Clewell J, Tundia N. Healthcare costs of not achieving remission in patients with rheumatoid arthritis in the United States: a retrospective cohort study. Adv Ther. 2021;38(5):2558–70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim SY, Servi A, Polinski JM, et al. Validation of rheumatoid arthritis diagnoses in health care utilization data. Arthritis Res Ther. 2011;13(1):R32.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gagne JJ, Glynn RJ, Avorn J, Levin R, Schneeweiss S. A combined comorbidity score predicted mortality in elderly patients better than existing scores. J Clin Epidemiol. 2011;64(7):749–59.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun JW, Rogers JR, Her Q, et al. Adaptation and validation of the combined comorbidity score for ICD-10-CM. Med Care. 2017;55(12):1046–51.

    Article  PubMed  Google Scholar 

  24. Kim DH, Glynn RJ, Avorn J, et al. Validation of a claims-based frailty index against physical performance and adverse health outcomes in the health and retirement study. J Gerontol A Biol Sci Med Sci. 2019;74(8):1271–6.

    Article  PubMed  Google Scholar 

  25. Zhang Y, Li R, Tsai C-L. Regularization parameter selections via generalized information criterion. J Am Stat Assoc. 2010;105(489):312–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chand S. On tuning parameter selection of lasso-type methods—a monte carlo study. In: Paper presented at: Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST); 2012.

  27. Desai RJ, Wang SV, Vaduganathan M, Evers T, Schneeweiss S. Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA Netw Open. 2020;3(1):e1918962–e1918962.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  29. Dore RK, Antonova J, Burudpakdee C, Wang X, Ozbay B, Genovese MC. SAT0133 treatment patterns, persistence, and durability in rheumatoid arthritis patients with inadequate response to biologic disease-modifying anti-rheumatic drugs (BDMARDS). Ann Rheum Dis. 2019;78(Suppl 2):1135–6.

    Google Scholar 

  30. Chastek B, Chen CI, Proudfoot C, Shinde S, Kuznik A, Wei W. Treatment persistence and healthcare costs among patients with rheumatoid arthritis changing biologics in the USA. Adv Ther. 2017;34(11):2422–35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meijboom RW, Gardarsdottir H, Becker ML, et al. Switching TNFα inhibitors: patterns and determinants. Pharmacol Res Perspect. 2021;9(4): e00843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li K-J, Chang C-L, Hsin C-Y, Tang C-H. Switching and discontinuation pattern of biologic disease-modifying antirheumatic drugs and tofacitinib for patients with rheumatoid arthritis in Taiwan. Front Pharmacol. 2021;2021:12.

    Google Scholar 

  33. Fletcher A, Lassere M, March L, et al. Patterns of biologic and targeted-synthetic disease-modifying antirheumatic drug use in rheumatoid arthritis in Australia. Rheumatology. 2022;2022:5.

    Google Scholar 

  34. Saevarsdottir S, Wedrén S, Seddighzadeh M, et al. Patients with early rheumatoid arthritis who smoke are less likely to respond to treatment with methotrexate and tumor necrosis factor inhibitors: observations from the Epidemiological Investigation of Rheumatoid Arthritis and the Swedish Rheumatology Register cohorts. Arthritis Rheum. 2011;63(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  35. Schäfer M, Meißner Y, Kekow J, et al. Obesity reduces the real-world effectiveness of cytokine-targeted but not cell-targeted disease-modifying agents in rheumatoid arthritis. Rheumatology. 2019;59(8):1916–26.

    Article  PubMed Central  CAS  Google Scholar 

  36. Højgaard P, Glintborg B, Kristensen LE, Gudbjornsson B, Love TJ, Dreyer L. The influence of obesity on response to tumour necrosis factor-α inhibitors in psoriatic arthritis: results from the DANBIO and ICEBIO registries. Rheumatology. 2016;55(12):2191–9.

    Article  PubMed  CAS  Google Scholar 

  37. Micheroli R, Hebeisen M, Wildi LM, et al. Impact of obesity on the response to tumor necrosis factor inhibitors in axial spondyloarthritis. Arthritis Res Ther. 2017;19(1):164–164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Suh YS, Cheon YH, Kim HO, et al. Medication nonadherence in Korean patients with rheumatoid arthritis: the importance of belief about medication and illness perception. Korean J Intern Med. 2018;33(1):203–10.

    Article  PubMed  Google Scholar 

  39. Wabe N, Lee A, Wechalekar M, McWilliams L, Proudman S, Wiese M. Factors associated with medication adherence in a longitudinal study of rheumatoid arthritis patients. Int J Clin Pract. 2019;73(7): e13375.

    Article  PubMed  CAS  Google Scholar 

  40. Rodrigues JR, Faria DS, Neves JS, et al. Positive affect as a predictor of adherence in patients with Rheumatoid Arthritis. Acta Reumatol Portuguesa. 2019;44(2):132–7.

    Google Scholar 

  41. Pasma A, van’t Spijker A, Hazes JM, Busschbach JJ, Luime JJ. Factors associated with adherence to pharmaceutical treatment for rheumatoid arthritis patients: a systematic review. Semin Arthritis Rheum. 2013;43(1):18–28.

    Article  PubMed  Google Scholar 

  42. Morgan C, McBeth J, Cordingley L, et al. The influence of behavioural and psychological factors on medication adherence over time in rheumatoid arthritis patients: a study in the biologics era. Rheumatol (Oxf). 2015;54(10):1780–91.

    Article  CAS  Google Scholar 

  43. Kumar K, Raza K, Nightingale P, et al. Determinants of adherence to disease modifying anti-rheumatic drugs in White British and South Asian patients with rheumatoid arthritis: a cross sectional study. BMC Musculoskelet Disord. 2015;16:396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Laganà B, Zullo A, Scribano ML, et al. Sex differences in response to TNF-inhibiting drugs in patients with spondyloarthropathies or inflammatory bowel diseases. Front Pharmacol. 2019;10:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jawaheer D, Olsen J, Hetland ML. Sex differences in response to anti-tumor necrosis factor therapy in early and established rheumatoid arthritis—results from the DANBIO registry. J Rheumatol. 2012;39(1):46–53.

    Article  PubMed  Google Scholar 

  46. Rusman T, Ten Wolde S, Euser SM, van der Ploeg T, van Hall O, van der Horst-Bruinsma IE. Gender differences in retention rate of tumor necrosis factor alpha inhibitor treatment in ankylosing spondylitis: a retrospective cohort study in daily practice. Int J Rheum Dis. 2018;21(4):836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hider SL, Tanveer W, Brownfield A, Mattey DL, Packham JC. Depression in RA patients treated with anti-TNF is common and under-recognized in the rheumatology clinic. Rheumatol (Oxf). 2009;48(9):1152–4.

    Article  Google Scholar 

  48. Lwin MN, Serhal L, Holroyd C, Edwards CJ. Rheumatoid arthritis: the impact of mental health on disease: a narrative review. Rheumatol Therapy. 2020;7(3):457–71.

    Article  Google Scholar 

  49. Calip GS, Adimadhyam S, Xing S, Rincon JC, Lee WJ, Anguiano RH. Medication adherence and persistence over time with self-administered TNF-alpha inhibitors among young adult, middle-aged, and older patients with rheumatologic conditions. Semin Arthritis Rheum. 2017;47(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  50. Kristensen LE, Saxne T, Nilsson J-Å, Geborek P. Impact of concomitant DMARD therapy on adherence to treatment with etanercept and infliximab in rheumatoid arthritis. Results from a six-year observational study in southern Sweden. Arthritis Res Therapy. 2006;8(6):R174.

    Article  CAS  Google Scholar 

  51. Engel-Nitz NM, Ogale S, Kulakodlu M. Use of anti-tumor necrosis factor therapy: a retrospective study of monotherapy and adherence to combination therapy with non-biologic disease-modifying anti-rheumatic drugs. Rheumatol Ther. 2015;2(2):127–39.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Blum MA, Koo D, Doshi JA. Measurement and rates of persistence with and adherence to biologics for rheumatoid arthritis: a systematic review. Clin Ther. 2011;33(7):901–13.

    Article  PubMed  Google Scholar 

  53. Aaltonen KJ, Virkki LM, Malmivaara A, Konttinen YT, Nordström DC, Blom M. Systematic review and meta-analysis of the efficacy and safety of existing TNF blocking agents in treatment of rheumatoid arthritis. PLoS ONE. 2012;7(1): e30275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klareskog L, van der Heijde D, de Jager JP, et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. The Lancet. 2004;363(9410):675–81.

    Article  CAS  Google Scholar 

  55. Emery P, Breedveld FC, Hall S, et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. The Lancet. 2008;372(9636):375–82.

    Article  CAS  Google Scholar 

  56. Smolen JS, Emery P, Fleischmann R, et al. Adjustment of therapy in rheumatoid arthritis on the basis of achievement of stable low disease activity with adalimumab plus methotrexate or methotrexate alone: the randomised controlled OPTIMA trial. The Lancet. 2014;383(9914):321–32.

    Article  CAS  Google Scholar 

  57. Dessein PH, Joffe BI, Stanwix AE. High sensitivity C-reactive protein as a disease activity marker in rheumatoid arthritis. J Rheumatol. 2004;31(6):1095–7.

    CAS  PubMed  Google Scholar 

  58. Graf J, Scherzer R, Grunfeld C, Imboden J. Levels of C-reactive protein associated with high and very high cardiovascular risk are prevalent in patients with rheumatoid arthritis. PLoS ONE. 2009;4(7): e6242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pope JE, Choy EH. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin Arthritis Rheum. 2021;51(1):219–29.

    Article  CAS  PubMed  Google Scholar 

  60. Cylwik B, Chrostek L, Gindzienska-Sieskiewicz E, Sierakowski S, Szmitkowski M. Relationship between serum acute-phase proteins and high disease activity in patients with rheumatoid arthritis. Adv Med Sci. 2010;55(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  61. Yildirim K, Karatay S, Melikoglu MA, Gureser G, Ugur M, Senel K. Associations between acute phase reactant levels and disease activity score (DAS28) in patients with rheumatoid arthritis. Ann Clin Lab Sci. 2004;34(4):423–6.

    PubMed  Google Scholar 

  62. England BR, Thiele GM, Mikuls TR. Anticitrullinated protein antibodies: origin and role in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 2017;29(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  63. McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. The Lancet. 2017;389(10086):2328–37.

    Article  CAS  Google Scholar 

  64. Courvoisier DS, Chatzidionysiou K, Mongin D, et al. The impact of seropositivity on the effectiveness of biologic anti-rheumatic agents: results from a collaboration of 16 registries. Rheumatology. 2020;60(2):820–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoyoung C. Kim.

Ethics declarations

Funding

This project was supported by AbbVie (grant number: 2018A018586).

Role of the study sponsor

The sponsor provided the data access to the authors at Brigham and Women’s Hospital via the third-party agreement. The authors at Brigham and Women’s Hospital analyzed the data, interpreted the results, determined the final wording of the manuscript, and had the final decision to submit the manuscript for publication. The sponsor was given the opportunity to make nonbinding comments on a draft of the manuscript. Publication of this article was not contingent upon approval by the sponsor.

Conflicts of interest/Competing interests

Jin and Landon declare that they have no conflict of interest. Desai reports receiving research grants from Bayer, Vertex, and Novartis for unrelated research. Liede and Krueger are full-time AbbVie employees and therefore own AbbVie stock. Kim has received research grants to the Brigham and Women’s Hospital from Pfizer, AbbVie, Roche and Bristol-Myers Squibb.

Availability of data and material

The data that support the findings of this study are not publicly available.

Code availability

The codes that support the findings of this study are available from the corresponding author, SCK, upon reasonable request.

Authors' contributions

All authors meet the journal’s criteria for authorship. All authors have contributed to the work and approve the presented findings.

Ethics approval

The study protocol was reviewed and approved by the Institutional Review Board (IRB) of the Brigham and Women’s Hospital (IRB protocol number: 2019P003604).

Consent to participate

Patient-informed consent was not required, since the data were deidentified.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Landon, J., Krueger, W. et al. Predictors of Treatment Change Among Patients with Rheumatoid Arthritis Treated with TNF Inhibitors as First-Line Biologic Agent in the USA: A Cohort Study from Longitudinal Electronic Health Records. BioDrugs 36, 521–535 (2022). https://doi.org/10.1007/s40259-022-00542-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-022-00542-w

Navigation