Skip to main content

Advertisement

Log in

Synthesis and Microstructure Investigation of Ni40Ti50Cu10 Intermetallic Shape Memory Alloys by Self-Propagating Combustion Method

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study concerns the substitution of copper for nickel in the Ni–Ti system in order to obtain a molar ratio of Ni40Ti50Cu10. Effects of preheating temperature were studied to understand the morphology, phase transformation, and microstructure of the samples by using self-propagating high-temperature synthesis. Therefore, three distinct preheating temperatures (230 °C, 320 °C, and 410 °C) were used for the study. The thermochemical calculations performed with FactSage presented similar results with the experimental data in terms of solid–liquid ratios and adiabatic temperature during the reactions. An increase in the preheating temperature very slightly changed the transformation temperature, but it was shown to be insignificant. B2 crystal structure was found as the main phase besides a small amount of martensite, Ti2Ni(Cu), and Ni(Cu)2Ti–Ni(Cu)3Ti by various characterization methods. The monoclinic twinned martensitic (B19′) structure was encountered in transmission electron microscopy analyses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jani J M, Leary M, Subic A, and Gibson M A, Mater Des 56 (2014) 1078.

    Article  Google Scholar 

  2. Nam T H, Saburi T, and Shimizu K I, JIM 31 (1990) 959.

    Google Scholar 

  3. Otsuka K, and Ren X, Prog Mater Sci 50 (2005) 511.

    Article  CAS  Google Scholar 

  4. Nam T H, Saburi T, Nakata Y, and Shimizu K I, Mater Trans JIM 31 (1990) 1050.

    Article  CAS  Google Scholar 

  5. Goryczka T, and Van Humbeeck J, J Alloys Compd 456 (2008) 194.

    Article  CAS  Google Scholar 

  6. Nespoli A, Villa E, and Besseghini S, J Alloys Compd 509 (2011: 644.

    Article  CAS  Google Scholar 

  7. Lo Y, Wu S, and Horng H, Acta Metall Mater 41 (1993) 747.

    Article  CAS  Google Scholar 

  8. Oliveira J P, Miranda R M, and Braz Fernandes F M, Prog Mater Sci 88 (2017) 412.

    Article  CAS  Google Scholar 

  9. Elahinia M H, Hashemi M, Tabesh M, and Bhaduri S B, Prog Mater Sci 57 (2012) 911.

    Article  CAS  Google Scholar 

  10. Parvizi S, Hashemi S M, Asgarinia F, Nematollahi M, and Elahinia M, Prog Mater Sci 117 (2020) 100739

    Article  Google Scholar 

  11. Xiong Z, Li Z, Sun Z, Hao S, Yang Y, Li M, Song C, Qiu P, and Cui L, J Mater Sci Technol 35 (2019) 2238.

    Article  CAS  Google Scholar 

  12. Bram M, Ahmad-Khanlou A, Heckmann A, Fuchs B, Buchkremer H P, and Stöver D, Mater Sci Eng A 337 (2002) 254.

    Article  Google Scholar 

  13. Kılıç M, Yenigun B, Bati S, Balalan Z, and Kirik I, Mater Test 61 (2019) 1140.

    Article  Google Scholar 

  14. Yeh C L, and Sung W Y, J Alloys Compd 376 (2004) 79.

    Article  CAS  Google Scholar 

  15. Li B, Rong L J, Li Y-Y, and Gjunter V, Acta Mater 48 (2000) 3895.

    Article  CAS  Google Scholar 

  16. Jiang H C, and Rong L J, Mater Sci Eng A 438–440 (2006) 883.

    Article  Google Scholar 

  17. Bassani P, Giuliani P, Tuissi A, and Zanotti C, J Mater Eng Perform 18 (2009) 594.

    Article  CAS  Google Scholar 

  18. CRCT, GCT, Factsage https://www.factsage.com, Accessed 28 November 2021.

  19. Novák P, Mejzlíková L, Michalcová A, Čapek J, Beran P, and Vojtěch D, Intermetallics 42 (2013) 85.

    Article  Google Scholar 

  20. Tay B Y, Goh C W, Gu Y W, Lim C S, Yong M S, Ho M K, and Myint M H, J Mater Process Technol 202 (2008) 359.

    Article  CAS  Google Scholar 

  21. Fukuda T, Saburi T, Chihara T, and Tsuzuki Y, Mater Trans 36 (1995) 1244.

    Article  CAS  Google Scholar 

  22. Tadaki T, and Wayman C M, Metallography 15 (1982) 247.

    Article  CAS  Google Scholar 

  23. Tang M, Zhang Y, Jiang S, Yu J, Yan B, Zhao C, and Yan B, Intermetallics 118 (2020) 106700

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the financial support from The Scientific and Technological Research of Turkey (TUBITAK, Project No: 213M556).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berk Keskin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, B., Bassani, P., Bakan, F. et al. Synthesis and Microstructure Investigation of Ni40Ti50Cu10 Intermetallic Shape Memory Alloys by Self-Propagating Combustion Method. Trans Indian Inst Met 75, 2749–2758 (2022). https://doi.org/10.1007/s12666-022-02657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02657-8

Keywords

Navigation