Skip to main content
Log in

Some nonexistence results for space–time fractional Schrödinger equations without gauge invariance

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

To Professor J. A. Tenreiro Machado, in Memoriam

Abstract

In this paper, we consider the Cauchy problem in \(\mathbb {R}^N\), \(N\ge 1\), for semi-linear Schrödinger equations with space–time fractional derivatives. We discuss the nonexistence of global \(L^1\) or \(L^2\) weak solutions in the subcritical and critical cases under some conditions on the initial data and the nonlinear term. Furthermore, the nonexistence of local \(L^1\) or \(L^2\) weak solutions in the supercritical case are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dao, T.A., Reissig, M.: A blow-up result for semi-linear structurally damped \(\sigma \)-evolution equations (2019). arXiv:1909.01181v1

  2. Dong, J., Xu, M.: Space–time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)

    Article  MathSciNet  Google Scholar 

  3. Feng, Y., Li, L., Liu, J.G., Xu, X.: Continuous and discrete one dimensional autonomous fractional ODEs. Discrete Contin. Dyn. Syst. B 23(8), 3109–3135 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Fino, A.Z., Dannawi, I., Kirane, M.: Blow-up of solutions for semilinear fractional Schrödinger equations. J. Integral Equ. Appl. 30(1), 67–80 (2018)

    Article  Google Scholar 

  5. Fino, A.Z., Dannawi, I., Kirane, M.: Erratum to blow-up of solutions for semilinear fractional Schrödinger equations. J. Integral Equ. Appl. 32(3), 395–396 (2020)

    Article  Google Scholar 

  6. Fujiwara, K.: A note for the global nonexistence of semirelativistic equations with nongauge invariant power type nonlinearity. Math. Methods Appl. Sci. 41(13), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  7. Fujiwara, K., Ozawa, T.: Remarks on global solutions to the Cauchy problem for semirelativistic equations with power type nonlinearity. Int. J. Math. Anal. 9, 2599–2610 (2015)

    Article  Google Scholar 

  8. Ikeda, M., Wakasugi, Y.: Small data blow-up of \(L^2\)-solution for the nonlinear Schrödinger equation without gauge invariance. Differ. Int. Equ. 26, 1275–1285 (2013)

    MATH  Google Scholar 

  9. Ikeda, M., Inui, T.: Small data blow-up of \(L^2\) or \(H^1\)-solution for the semilinear Schrödinger equation without gauge invariance. J. Evol. Equ. 15(3), 1–11 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ikeda, M., Inui, T.: Some non-existence results for the semilinear Schrödinger equation without gauge invariance. J. Math. Anal. Appl. 425(2), 758–773 (2015)

    Article  MathSciNet  Google Scholar 

  11. Inui, T.: Some nonexistence results for a semirelativistic Schrödinger equation with nongauge power type nonlinearity. Proc. Am. Math. Soc. 144(7), 2901–2909 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science, Inc., New York (2006)

    Book  Google Scholar 

  13. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). https://doi.org/10.1515/fca-2017-0002

    Article  MathSciNet  MATH  Google Scholar 

  14. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135–3145 (2000)

    Article  MathSciNet  Google Scholar 

  15. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  16. Laskin, N.: Fractals and quantum mechanics. Chaos 10(4), 780–790 (2000)

    Article  MathSciNet  Google Scholar 

  17. Lee, J.B.: Strichartz estimates for space–time fractional Schrödinger equations. J. Math. Anal. Appl. 487(2), 123999 (2020)

    Article  MathSciNet  Google Scholar 

  18. Li, L., Liu, J.G.: A generalized definition of Caputo derivatives and its application to fractional ODEs. SIAM J. Math. Anal. 50(3), 2867–2900 (2018)

    Article  MathSciNet  Google Scholar 

  19. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004)

    Article  MathSciNet  Google Scholar 

  20. Narahari, B.N.A., Yale, B.T., Hanneken, J.W.: Time fractional Schrödinger equation revisited. Adv. Math. Phys. (2013). https://doi.org/10.1155/2013/290216

    Article  MATH  Google Scholar 

  21. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Philadelphia (1987)

    MATH  Google Scholar 

  22. Saxena, R.K., Saxena, R., Kalla, S.L.: Solution of space–time fractional Schrödinger equation occurring in quantum mechanics. Fract. Calc. Appl. Anal. 13(2), 177–190 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Tenreiro Machado, J.A.: And I say to myself: what a fractional world! Fract. Calc. Appl. Anal. 14(4), 635–654 (2011). https://doi.org/10.2478/s13540-011-0037-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q.S.: A blow up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris 333(2), 109–114 (2001)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Q.G., Sun, H.R., Li, Y.N.: The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance. Appl. Math. Lett. 64, 119–124 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The second author is supported by the Lebanese University research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Kirane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirane, M., Fino, A.Z. Some nonexistence results for space–time fractional Schrödinger equations without gauge invariance. Fract Calc Appl Anal 25, 1361–1387 (2022). https://doi.org/10.1007/s13540-022-00046-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00046-y

Keywords

Mathematics Subject Classification

Navigation