Skip to main content
Log in

IR-initiated preparation method of high performance nanofiltration membranes using graft polymerization of acrylic acid onto polyacrylonitrile surface

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new facile, cost-effective and safe approach is introduced for the modification of polyacrylonitrile (PAN) membrane surface by a polymerization process in order to improve hydrophilicity and antifouling. For this purpose, membrane activated by IR-initiated, and acrylic acid (AA) as a monomer was successfully grafted on the membrane surface. The surface properties of membranes were characterized by means of various techniques: infrared spectroscopy, zeta potential, water contact angle, atomic force microscopy (AFM), and scanning electron microscopy (SEM). The experimental results indicate that the membrane surface becomes more hydrophilic by reducing the contact angle from 67.1° to 52.5°. The existence of hydrophilic chains on the membrane surface facilitates the creation of a negative charge on the membrane surface unto −2.99 mV (from 3.51 mV in based-membrane). The separation performance of the modified membrane showed a desirable yield. For a membrane photografted for 25 min with acrylic acid solution (2 wt%), the retention of Na2SO4, MgSO4, NaCl, and CaCl2 was in the order of 81%, 67%, 34%, and 28%, respectively. The membrane retention is expressed the values of 90.37%, 87.17%, and 79.5% for Acid Blue 92, Acid Red 114, and Ibuprofen. The optimized NF membrane showed a permeability factor (Lp) of 6.48 L·m−2·h−1·bar−1. Furthermore, the surface modification of the PAN membrane via the IR-induced graft polymerization exhibits an enhancement of the membrane antifouling property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. W. Jern, Industrial wastewater treatment, Imperial College Press, London (2006).

    Google Scholar 

  2. N. S. Alharbi, B. Hu, T. Hayat, S. O. Rabah, A. Alsaedi, L. Zhuang and X. Wang, Front. Chem. Sci. Eng., 14, 1124 (2020).

    Article  CAS  Google Scholar 

  3. G. Srikanth, Membrane separation processes: Technology and business opportunities, Water Conditioning & Purification, 1–4 (2008).

  4. H. Karimnezhad, A. H. Navarchian, T. Tavakoli and S. Zinadini, React. Funct. Polym., 135, 77 (2018).

    Article  Google Scholar 

  5. K. C. Khulbe, C. Feng and T. Matsuura, J. Appl. Polym. Sci., 115, 855 (2010).

    Article  CAS  Google Scholar 

  6. J. A. Pinem, A. K. Wardani, P. T. P. Aryanti, K. Khoiruddin and I. G. Wenten, Conf. Ser.: Mater. Sci. Eng., 547, 012054 (2019).

    CAS  Google Scholar 

  7. H. Chen, L. Kong and Y. Wang, J. Memb. Sci., 487, 109 (2015).

    Article  CAS  Google Scholar 

  8. D. S. Wavhal and E. R. Fisher, Langmuir, 19, 79 (2003).

    Article  CAS  Google Scholar 

  9. V. Balzani, P. Ceroni and A. Juris, Photochemistry and photophysics, Wiley-VCH, Weinheim (2014).

    Google Scholar 

  10. T. Goma-Bilongo, A. Akbari, M. J. Clifton and J. C. Remigy, J. Membr. Sci., 278, 308 (2006).

    Article  CAS  Google Scholar 

  11. A. Akbari, S. Desclaux, J. C. Rouch, P. Aptel and J. C. Remigy, J. Memb. Sci., 286, 342 (2006).

    Article  CAS  Google Scholar 

  12. S. Bequet, T. Abenoza, P. Aptel, J. M. Remiigy and A. Ricard, Desalination, 131, 299 (2000).

    Article  CAS  Google Scholar 

  13. L. P. Zhu, B. K. Zhu, L. Xu, Y. X. Feng, F. Liu and Y. Y. Xu, Appl. Surf. Sci., 253, 6052 (2007).

    Article  CAS  Google Scholar 

  14. L. Stano, M. Stano and P. Durina, Int. J. Hydrog. Energy, 45, 80 (2019).

    Article  Google Scholar 

  15. C. Qiu, Q. T. N. L. Zhang and Z. Ping, Sep. Purif. Technol., 51, 325 (2006).

    Article  CAS  Google Scholar 

  16. M. Abedi, M. Pourafshari Chenar and M. Sadeghi, Fibers Polym., 16, 788 (2015).

    Article  CAS  Google Scholar 

  17. P. Ryšánek, O. Benada, J. Tokarský, M. Syrový, P. Čapková and J. Pavlík, Mater. Sci. Eng. C, 105, 110151 (2019).

    Article  Google Scholar 

  18. L. Pérez-Álvarez, L. Ruiz-Rubio, I. Moreno and J. L. Vilas-Vilela, Polymers, 11(11), 1 (2019).

    Article  Google Scholar 

  19. T. Chittrakarn, Y. Tirawanichakul, S. Sirijarukul and C. Yuenyao, Surf. Coat. Technol., 296, 157 (2016).

    Article  CAS  Google Scholar 

  20. K. S. Kim, K. H. Lee, K. Cho and C. E. Park, J. Membr. Sci., 199, 135 (2002).

    Article  CAS  Google Scholar 

  21. W. Wang, X. Huang, H. Yin, W. Fan, T. Zhang, L. Li and C. Mao, Biomed. Mater., 10, 065022 (2015).

    Article  PubMed  Google Scholar 

  22. L. I. Kravets, A. B. Gilman and G. Dinescu, Russ. J. Gen. Chem., 85, 1284 (2015).

    Article  CAS  Google Scholar 

  23. Y. T. Chung, L. Y. Ng and A. W. Mohammad, J. Ind. Eng. Chem., 20, 1549 (2014).

    Article  CAS  Google Scholar 

  24. H. Y. Yu, Z. K. Xu, H. Lei, M. X. Hu and Q. Yang, Sep. Purif. Technol., 53, 119 (2007).

    Article  CAS  Google Scholar 

  25. V. Vatanpour, M. Esmaeili, M. Safarpour, A. Ghadimi and J. Adabi, React. Funct. Polym., 134, 74 (2019).

    Article  CAS  Google Scholar 

  26. M. Homayoonfal, A. Akbari and M. R. Mehrnia, Desalination, 263, 217 (2010).

    Article  CAS  Google Scholar 

  27. H. Helin, L. Na, W. Linlin, Z. Hui, W. Guangxia, Y. Zonghuan, L. Xiangwei and T. Lianyi, J. Environ. Sci., 20, 565 (2008).

    Article  Google Scholar 

  28. D. Huang, P. Yang, X. Tang, L. Luo and B. Sunden, Trends Food Sci. Technol., 110, 765 (2021).

    Article  CAS  Google Scholar 

  29. D. A. Delfiya, K. Prashob, S. Murali, P. V. Alfiya, M. P. Samuel and R. Pandiselvam, J. Food Process Eng., 45(6), e13810 (2022).

    Article  Google Scholar 

  30. S. A. Aboud, A. B. Altemimi, A. R. S. Al-HiIphy, L. Yi-Chen and F. Cacciola, Molecules, 24(22), 1 (2019).

    Article  Google Scholar 

  31. B. Alaei, N. Dibagar, R. Amiri Chayjan, M. Kaveh and E. Taghinezhad, Quality Assurance and Safety of Crops and Foods, 10(4), 371 (2018).

    Article  CAS  Google Scholar 

  32. A. S. Silitonga, T. M. I. Mahlia, F. Kusumo, S. Dharma, A. H. Sebayang, R. W. Sembiring and A. H. Shamsuddin, Renew. Energy, 133, 520 (2019).

    Article  CAS  Google Scholar 

  33. S. M. Schieke, P. Schroeder and J. Krutmann, Photodermatol. Photoimmunol. Photomed., 19, 228 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. M. Rahal, B. Graff, J. Toufaily, T. Hamieh, M. Ibrahim-Ouali, F. Dumur and J. Lalevée, Catalysts, 11, 1269 (2021).

    Article  CAS  Google Scholar 

  35. L. Breloy, O. Yavuz, I. Yilmaz, Y. Yagci and D.-L. Versace, Polym. Chem., 12, 4291 (2021).

    Article  CAS  Google Scholar 

  36. Y. Li, B. O. Patrick and D. Dolphin, J. Org. Chem., 74, 5237 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. C. J. Davey, Z. X. Low, R. H. Wirawan and D. A. Patterson, J. Membr. Sci., 526, 221 (2017).

    Article  CAS  Google Scholar 

  38. A. D. Sabde, M. K. Trivedi, V. Ramachandhran, M. S. Hanra and B. M. Misra, Desalination, 114, 223 (1997).

    Article  CAS  Google Scholar 

  39. B. W. Gung and R. T. Taylor, J. Chem. Educ., 81, 1630 (2004).

    Article  CAS  Google Scholar 

  40. E. O. Moradi Rufchahi, H. Pouramir, M. R. Yazdanbakhsh, H. Yousefi, M. Bagheri and M. Rassa, Chinese Chem. Lett., 24, 425 (2013).

    Article  CAS  Google Scholar 

  41. K. C. Khulbe, C. Y. Feng and T. Matsuura, Synthetic polymeric membranes characterization by atomic force microscopy, Springer Laboratory Manuals in Polymer Science (2007).

  42. A. Bessières, A. Meireles, M. Coratger, R. Beauvillain and V. Sanchez, J. Membr. Sci., 109, 271 (1996).

    Article  Google Scholar 

  43. L. Chen, Y. Tian, C.-q. Cao, J. Zhang and Z.-n. Li, Water Res., 46, 2693 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. C. Liu, L. Chen and L. Zhu, Water Res., 119, 33 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. A. Schäfer, A. G. Fane and T. D. Waite, Nanofiltration principle and application, Elsevier Publication. Oxford (2005).

    Google Scholar 

  46. H. H. P. Fang and X. Shi, J. Membr. Sci., 264, 161 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the support of Khatam Al-Anbia Aran and Bidgol Physiotherapist Center with the management of Ibrahim Hasan Shiri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Akbari.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1154_MOESM1_ESM.pdf

IR-initiated preparation method of high performance nanofiltration membranes using graft polymerization of acrylic acid onto polyacrylonitrile surface

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani-Arani, Z., Akbari, A. IR-initiated preparation method of high performance nanofiltration membranes using graft polymerization of acrylic acid onto polyacrylonitrile surface. Korean J. Chem. Eng. 39, 2849–2860 (2022). https://doi.org/10.1007/s11814-022-1154-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1154-8

Keywords

Navigation