Skip to main content

Advertisement

Log in

Bioelectrochemical treatment of olive oil mill wastewater using an optimized microbial electrolysis cell to produce hydrogen

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A single chamber microbial electrolysis cell (MEC) was constructed to treat olive oil mill wastewater (OOMW) biologically and produce hydrogen simultaneously. To characterize the optimal MEC condition, the MEC was fed with synthetic wastewater (SW) having a phenol concentration of 250 mg l−1. Therefore, the influence of different applied voltages and cathode materials was explored and the optimum condition for MEC was determined, which was when the stainless steel cathode was implemented and the external voltage of 0.6 V was supplied. Chemical oxygen demand (COD) removal of 62% and current density of 362 mA m−2 were obtained for OOMW treatment, while COD removal of 73% and the current density of 274.4 mA m−2 were attained for SW treatment in this MEC at 0.6 V. Hydrogen production rate was 0.045 m3 H2 m−3d−1 for SW and 0.053 m3 H2 m−3d−1 for OOMW. Furthermore, the coulombic efficiency and cathodic hydrogen recovery were 23% and 81%, respectively. Finally, MEC performance in terms of electrical current generation, wastewater treatment and hydrogen production was compared to some similar reported studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mantzavinos and N. Kalogerakis, Environ. Int., 31, 289 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. S. Dermeche, M. Nadour, C. Larroche, F. Moulti-Mati and P. Michaud, Process Biochem., 48, 1532 (2013).

    Article  CAS  Google Scholar 

  3. C. A. García and G. Hodaifa, J. Cleaner Prod., 162, 743 (2017).

    Article  CAS  Google Scholar 

  4. C. J. McNamara, C. C. Anastasiou, V. O’Flaherty and R. Mitchell, Int. Biodeterior. Biodegrad., 61, 127 (2008).

    Article  CAS  Google Scholar 

  5. R. Tu, W. Jin, S.-F. Han, B. Ding, S.-h. Gao, X. Zhou, S.-f. Li, X. Feng, Q. Wang, Q. Yang and Y. Yuwen, Korean J. Chem. Eng., 37, 827 (2020).

    Article  CAS  Google Scholar 

  6. M. Isidori, M. Lavorgna, A. Nardelli and A. Parrella, Appl. Microbiol. Biotechnol., 64, 735 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. A. Fiorentino, A. Gentili, M. Isidori, M. Lavorgna, A. Parrella and F. Temussi, J. Agric. Food Chem., 52, 5151 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. M. Bagheri, R. Daneshvar, A. Mogharei and F. Vahabzadeh, Korean J. Chem. Eng., 37, 1233 (2020).

    Article  CAS  Google Scholar 

  9. A. Hussain, F. M. Lebrun and B. Tartakovsky, Enzyme Microb. Technol., 102, 41 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Y. H. Jia, J. Y. Choi, J. H. Ryu, C. H. Kim, W. K. Lee, H. T. Tran, R. H. Zhang and D. H. Ahn, Korean J. Chem. Eng., 27, 1854 (2010).

    Article  CAS  Google Scholar 

  11. Y. Liu, C. Wang, K. Zhang, Y. Zhou, Y. Xu, X. Xu and L. Zhu, Sci. Total Environ., 724, 138053 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. G. Rani, Z. Nabi, J. R. Banu and K. Yogalakshmi, Renewable Energy, 153, 168 (2020).

    Article  CAS  Google Scholar 

  13. R. Cebecioglu, D. Akagunduz and T. Catal, 3 Biotech, 11, 1 (2021).

    Article  Google Scholar 

  14. W. Cui, Y. Lu, C. Zeng, J. Yao, G. Liu, H. Luo and R. Zhang, Sci. Total Environ., 780, 146597 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. R. A. Tufa, J. Hnát, M. Němeček, R. Kodým, E. Curcio and K. Bouzek, J. Cleaner Prod., 203, 418 (2018).

    Article  CAS  Google Scholar 

  16. D. Rosa, A. B. P. Medeiros, W. J. Martinez-Burgos, J. R. do Nascimento, J. C. de Carvalho, E. B. Sydney and C. R. Soccol, J. Biotechnol., 323, 17 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. E. Jwa, Y.-M. Yun, H. Kim, N. Jeong, S.-C. Park and J.-Y. Nam, Int. J. Hydrogen Energy, 44, 652 (2019).

    Article  CAS  Google Scholar 

  18. I. K. Kapdan and F. Kargi, Enzyme Microb. Technol., 38, 569 (2006).

    Article  CAS  Google Scholar 

  19. S. Cheng and B. E. Logan, Proc. Natl. Acad. Sci. U. S. A., 104, 18871 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. C. Davies, A. M. Vilhena, J. M. Novais and S. Martins-Dias, Grasas Aceites, 55, 233 (2004).

    Article  CAS  Google Scholar 

  21. W. E. Federation and A. Association, Standard methods for the examination of water and wastewater, Am. Public Health Assoc. (APHA): Washington, DC, USA (2005).

    Google Scholar 

  22. J. Box, Water Res., 17, 511 (1983).

    Article  CAS  Google Scholar 

  23. D. Call and B. E. Logan, Environ. Sci. Technol., 42, 3401 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. B. Ye, H. Luo, Y. Lu, G. Liu, R. Zhang and X. Li, Bioresour. Technol., 244, 913 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. A. Ding, Y. Yang, G. Sun and D. Wu, Chem. Eng. J., 283, 260 (2016).

    Article  CAS  Google Scholar 

  26. H. Cao, X. Li, J. Sun and F. Zhong, Acta Sci. Circumstantiae, 4 (2001).

  27. Q. Luo, H. Wang, X. Zhang and Y. Qian, Appl. Environ. Microbiol., 71, 423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Kundu, J. N. Sahu, G. Redzwan and M. Hashim, Int. J. Hydrogen Energy, 38, 1745 (2013).

    Article  CAS  Google Scholar 

  29. D. F. Call, M. D. Merrill and B. E. Logan, Environ. Sci. Technol., 43, 2179 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. M. Zhou, M. Chi, J. Luo, H. He and T. Jin, J. Power Sources, 196, 4427 (2011).

    Article  CAS  Google Scholar 

  31. B. Ghasemi, S. Yaghmaei, K. Abdi, M. M. Mardanpour and S. A. Haddadi, J. Biosci. Bioeng., 129, 67 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. A. Askari, F. Vahabzadeh and M. M. Mardanpour, J. Cleaner Prod., 294, 126349 (2021).

    Article  CAS  Google Scholar 

  33. A. Askari, F. Vahabzadeh and M. M. Mardanpour, Bioprocess Biosyst. Eng., 44, 2579 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. S. Cheng and B. E. Logan, Water Sci. Technol., 58, 853 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. W. Liu, A. Wang, S. Cheng, B. E. Logan, H. Yu, Y. Deng, J. D. V. Nostrand, L. Wu, Z. He and J. Zhou, Environ. Sci. Technol., 44, 7729 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. A. Wang, W. Liu, S. Cheng, D. Xing, J. Zhou and B. E. Logan, Int. J. Hydrogen Energy, 34, 3653 (2009).

    Article  CAS  Google Scholar 

  37. C. Varrone, J. D. Van Nostrand, W. Liu, B. Zhou, Z. Wang, F. Liu, Z. He, L. Wu, J. Zhou and A. Wang, Int. J. Hydrogen Energy, 39, 4222 (2014).

    Article  CAS  Google Scholar 

  38. A. Papazi, I. Pappas and K. Kotzabasis, J. Biotechnol., 306, 47 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Z. G. Naraghi, S. Yaghmaei, M. M. Mardanpour and M. Hasany, Electrochim. Acta, 180, 535 (2015).

    Article  CAS  Google Scholar 

  40. J. A. Baeza, À. Martínez-Miró, J. Guerrero, Y. Ruiz and A. Guisasola, J. Power Sources, 356, 500 (2017).

    Article  CAS  Google Scholar 

  41. R. Hedderich and W. B. Whitman, Physiology and biochemistry of the methane-producing Archaea, The prokaryotes, Springer, New York (2006).

    Google Scholar 

  42. R. D. Cusick, B. Bryan, D. S. Parker, M. D. Merrill, M. Mehanna, P. D. Kiely, G. Liu and B. E. Logan, Appl. Microbiol. Biotechnol., 89, 2053 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. N. Montpart, L. Rago, J. A. Baeza and A. Guisasola, Water Res., 68, 601 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. C. Zamalloa, J. B. Arends, N. Boon and W. Verstraete, New Biotechnol., 30, 573 (2013).

    Article  CAS  Google Scholar 

  45. B. Tartakovsky, P. Mehta, J.-S. Bourque and S. Guiot, Bioresour. Technol., 102, 5685 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. B. Tartakovsky, P. Mehta, G. Santoyo, C. Roy, J. C. Frigon and S. R. Guiot, J. Chem. Technol. Biotechnol., 89, 1501 (2014).

    Article  CAS  Google Scholar 

  47. E. Heidrich, J. Dolfing, K. Scott, S. Edwards, C. Jones and T. Curtis, Appl. Microbiol. Biotechnol., 97, 6979 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. L. Gil-Carrera, A. Escapa, R. Moreno and A. Morán, J. Environ. Manage., 122, 1 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. B. Tartakovsky, M.-F. Manuel, H. Wang and S. Guiot, Int. J. Hydrogen Energy, 34, 672 (2009).

    Article  CAS  Google Scholar 

  50. K. Hu, L. Xu, W. Chen, S.-q. Jia, W. Wang and F. Han, Environ. Sci. Pollut. Res., 25, 8715 (2018).

    Article  CAS  Google Scholar 

  51. M. Hasany, S. Yaghmaei, M. M. Mardanpour and Z. G. Naraghi, Chin. J. Chem. Eng., 25, 1847 (2017).

    Article  Google Scholar 

  52. A. Almatouq and A. Babatunde, Bioresour. Technol., 237, 193 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. A. Marone, O. R. Ayala-Campos, E. Trably, A. A. Carmona-Martínez, R. Moscoviz, E. Latrille, J.-P. Steyer, V. Alcaraz-Gonzalez and N. Bernet, Int. J. Hydrogen Energy, 42, 1609 (2017).

    Article  CAS  Google Scholar 

  54. L. Gil-Carrera, A. Escapa, P. Mehta, G. Santoyo, S. Guiot, A. Morán and B. Tartakovsky, Bioresour. Technol., 130, 584 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. X. Zeng, A. P. Borole and S. G. Pavlostathis, Environ. Sci. Technol., 49, 13667 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. S. K. Chaudhuri and D. R. Lovley, Nat. Biotechnol., 21, 1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. E. Lalaurette, S. Thammannagowda, A. Mohagheghi, P.-C. Maness and B. E. Logan, Int. J. Hydrogen Energy, 34, 6201 (2009).

    Article  CAS  Google Scholar 

  58. H. Luo, G. Liu, R. Zhang and S. Jin, Chem. Eng. J., 147, 259 (2009).

    Article  CAS  Google Scholar 

  59. C. Koch, A. Kuchenbuch, J. Kretzschmar, H. Wedwitschka, J. Liebetrau, S. Müller and F. Harnisch, RSC Adv., 5, 31329 (2015).

    Article  CAS  Google Scholar 

  60. J. R. Asztalos and Y. Kim, Water Res., 87, 503 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Taherkhani.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1167_MOESM1_ESM.pdf

Bioelectrochemical treatment of olive oil mill wastewater using an optimized microbial electrolysis cell to produce hydrogen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, A., Taherkhani, M. & Vahabzadeh, F. Bioelectrochemical treatment of olive oil mill wastewater using an optimized microbial electrolysis cell to produce hydrogen. Korean J. Chem. Eng. 39, 2148–2155 (2022). https://doi.org/10.1007/s11814-022-1167-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1167-3

Keywords

Navigation