Skip to main content
Log in

Epichlorohydrin Crosslinked 2,4-Dihydroxybenzaldehyde Schiff Base Chitosan@SrFe12O19 (EP-DBSB-CS@SrFe12O19) Magnetic Nanocomposite for Efficient Removal of Pb(II) and Cd(II) from Aqueous Solution

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this paper, new epichlorohydrin crosslinked 2,4-dihydroxybenzaldehyde Schiff base chitosan@SrFe12O19 magnetic nanocomposite (EP-DBSB-CS@SrFe12O19) was prepared from the reaction of epichlorohydrin, 2,4-dihydroxybenzaldehyde and chitosan (1:1:1 weight ratio) at the presence of SrFe12O19 nanoparticles. The title compound EP-DBSB-CS@SrFe12O19 was characterized by FT-IR, XRD, DSC, VSM, FE-SEM, EDS and map analysis and the results of all of them confirm that the successfully preparation of hard magnetic nanocomposite of EP-DBSB-CS@SrFe12O19 with uniform distribution of all elements. In addition, the removal of Pb(II) and Cd(II) ions from aqueous solution using EP-DBSB-CS@SrFe12O19 nanocomposite has been characterized and the effect of pH solution, shaking time and also sorbent dose on removal percentage were investigated. Adsorption results predicts that the maximum removal percentage, 98.5% for Pb(II) and 86% for Cd(II), was found to be at pH solution of 5 at the presence of 0.02 g sorbent and 90 min contact time. According to these results, we proposed adsorption process using magnetic EP-DBSB-CS@SrFe12O19 nanocomposite to removal of other heavy metal such as Hg(II), Cu(II), Co(II), Cr(VI) and Ni(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during this work are available from the corresponding author.

References

  1. Jawad AH, Abdulhameed AS, Wilson LD, Hanafiah MAKM, Nawawi WI, Alothman ZA, Khan MR (2021) Fabrication of Schiff’s base chitosan-glutaraldehyde/activated charcoal composite for cationic dye removal: optimization using response surface methodology. J Polym Environ 29:2855–2868

    Article  CAS  Google Scholar 

  2. Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rahgabhashiyam S, Khan MR, Alothman ZA (2021) J Polym Environ 29:3932–3947

    Article  CAS  Google Scholar 

  3. Li X, Zhang Z, Fakhri A, Gupta VK, Agarwal S (2019) Adsorption and photocatalysis assisted optimization for drug removal by chitosan glyoxal/polyvinylpyrrolidone/MoS2 nanocomposites. Int J Biol Macromol 136:469–475

    Article  CAS  PubMed  Google Scholar 

  4. Gupta VK, Fakhri A, Agarwal S, Bharti AK, Naji M, Tkachey AG (2018) Preparation and characterization of TiO2 nanofibers by hydrothermal method for removal of benzodiazepines (Diazepam) from liquids as catalytic ozonation and adsorption processes. J Mol Liq 249:1033–1038

    Article  CAS  Google Scholar 

  5. Gupta VK, Fakhri A, Agarwal S, Sadeghi N (2017) Synthesis of MnO2/cellulose fiber nanocomposites for rapid adsorption of insecticide compound and optimization by response surface methodology. Int J Biol Macromol 102:840–846

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal S, Sadeghi N, Tyagi I, Gupta VK, Fakhri A (2016) Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J Colloid Interface Sci 478:430–438

    Article  CAS  PubMed  Google Scholar 

  7. Gupta VK, Fakhri A, Rashidi S, Ibrahim AA, Asif M, Agarwal S (2017) Optimization of toxic biological compound adsorption from aqueous solution onto silicon and silicon carbide nanoparticles through response surface methodology. Mater Sci Eng C 77:1128–1134

    Article  Google Scholar 

  8. Gupta VK, Agarwal S, Bharti AK, Fakhri A, Naji M (2017) Pt nanoparticles decorated WO3-MWCNTs nanocomposites: preparation, characterization, and adsorption behavior. J Mol Liq 229:514–519

    Article  CAS  Google Scholar 

  9. Yang D, Li L, Chen B, Shi S, Nie J, Ma G (2019) Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 163:74–85

    Article  CAS  Google Scholar 

  10. Yang Y, Zeng L, Lin Z, Jiang H, Zhang A (2021) Adsorption of Pb2+, Cu2+, and Cd2+ by sulfhydryl modified chitosan beads. Carbohydr Polym 274:118622

    Article  CAS  PubMed  Google Scholar 

  11. Hussain MS, Musharraf SG, Bhanger MI, Malik MI (2020) Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead(II), copper(II), and cadmium(II) ions. Int J Biol Macromol 147:643–652

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Dang Q, Liu C, Wang X, Li B, Xu Q, Liu H, Ji X, Zhang B, Cha D (2021) Novel amidinothiourea-modified chitosan microparticles for selective removal of Hg(II) in solution. Carbohydr Polym 269:118273

    Article  CAS  PubMed  Google Scholar 

  13. Liu T, Gou S, He Y, Fang S, Zhou L, Gou G, Liu L (2021) N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment. Carbohydr Polym 269:118355

    Article  CAS  PubMed  Google Scholar 

  14. Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 28:333–343

    Article  Google Scholar 

  15. Zhang Y, Zhao M, Cheng Q, Wang C, Li H, Han X, Fan Z, Su G, Pan D, Li Z (2021) Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: a review. Chemosphere 279:130927

    Article  CAS  PubMed  Google Scholar 

  16. Begum S, Yuhana NY, Md Saleh N, Lamarudin NHN, Sulong AB (2021) Review of chitosan composite as a heavy metal adsorbent: material preparation and properties. Carbohydr Polym 259:117613

    Article  CAS  PubMed  Google Scholar 

  17. Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL (2021) Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 251:117000

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mahmud HNME, Huqa AKO, Yahya RB (2016) Removal of heavy metal ions from wastewater/aqueous solution by polypyrrole-based adsorbents: a review. RSC Adv 6:14778–14791

    Article  Google Scholar 

  20. Li LL, Feng XQ, Han RP, Zang SQ, Yang G (2017) Cr(VI) removal via anion exchange on a silver-triazolate MOF. J Hazard Mater 321:622–628

    Article  PubMed  Google Scholar 

  21. Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat MR, Alkasrawi M (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem Eng J 260:749–756

    Article  CAS  Google Scholar 

  22. Toti US, Aminabhavi TM (2004) Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures. J Membr Sci 228:199–208

    Article  CAS  Google Scholar 

  23. Shahraki S, Delarami HS, Khosravi F (2019) Synthesis and characterization of an adsorptive Schiff base–chitosan nanocomposite for removal of Pb(II) ion from aqueous media. Int J Biol Macromol 139:577–586

    Article  CAS  PubMed  Google Scholar 

  24. Ahmed R, Mirza A (2018) Facile one pot green synthesis of chitosan–iron oxide (CS–Fe2O3) nanocomposite: removal of Pb(II) and Cd(II) from synthetic and industrial wastewater. J Clean Prod 186:342–352

    Article  Google Scholar 

  25. Li M, Zhang Z, Li R, Wang JJ, Ali A (2016) Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan. Int J Biol Macromol 86:876–884

    Article  CAS  PubMed  Google Scholar 

  26. Zhao J, Niu Y, Ren B, Chen H, Zhang S, Jin J, Zhang Y (2018) Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(II) and Cd(II) from aqueous solution. Chem Eng J 347:574–584

    Article  CAS  Google Scholar 

  27. Cao Y, Alamri S, Rajhi AA, Anqi AE, Khalaji AD (2021) New chitosan Schiff base and its nanocomposite: removal of methyl green from aqueous solution and its antibacterial activities. Int J Biol Macromol 192:1–6

    Article  CAS  PubMed  Google Scholar 

  28. Bashandeh Z, Khalaji AD (2021) Effective removal of methyl green from aqueous solution using epichlorohydrin cross-linked chitosan. Adv J Chem A 4:270–277

    CAS  Google Scholar 

  29. Bashandeh Z, Khalaji AD (2021) An efficient removal of methyl green dye by adsorption onto new modified chitosan Schiff base. Asian J Nanosci Mater 4:274–281

    CAS  Google Scholar 

  30. Sanati M, Khalaji AD, Mokhtari A, Keyvanfard M (2021) Fast removal of methyl green from aqueous solution by adsorption onto new modified chitosan Schiff base. Prog Chem Biochem Res 4:319–330

    CAS  Google Scholar 

  31. Foroughnia A, Khalaji AD, Kolvari E, Koukabi N (2021) Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: evaluation of methyl orange removal and antibacterial activity. Int J Biol Macromol 177:83–91

    Article  CAS  PubMed  Google Scholar 

  32. Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258

    Article  CAS  Google Scholar 

  33. Alnajjar M, Hethnawi A, Nafie G, Hassan A, Vitale G, Nassar NN (2019) Silica–alumina composite as an effective adsorbent for the removal of metformin from water. J Environ Chem Eng 7:102994

    Article  CAS  Google Scholar 

  34. Saleem J, Shahid UB, Hijab M, Mackey H, McKay G (2019) Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers Biorefin 9:775–802

    Article  CAS  Google Scholar 

  35. Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, Johan MR (2020) Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 5:20684–20697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shu J, Cheng S, Xia H, Zhang L, Peng J, Li C, Zhang S (2017) Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Adv 7:14395–14405

    Article  CAS  Google Scholar 

  37. Grzabka-Zasadzinska A, Ratajczak I, Krol K, Wozniak M, Borysiak S (2021) The influence of crystalline structure of cellulose in chitosan-based biocomposite on removal of Ca(II), Mg(II), Fe(III) ion in aqueous solutions. Cellulose 28:5745–5759

    Article  CAS  Google Scholar 

  38. Pires AB, Vitali L, Tavares A, Germano CA, Amorim SM, Moreira RFPM, Peralta RA, Neves A (2021) Chitosan functionalized with heptadentate dinucleating ligand applied to removal of nickel, copper and zinc. Carbohydr Polym 256:117589

    Article  CAS  PubMed  Google Scholar 

  39. Yan Y, Yuvaraja G, Liu C, Kong L, Guo K, Reddy GM, Zyryanov GV (2018) Removal of Pb(II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff’s base@Fe3O4 (ECCSB@Fe3O4). Int J Biol Macromol 117:1305–1313

    Article  CAS  PubMed  Google Scholar 

  40. Yuvaraja G, Pang Y, Chen DY, Kong LJ, Mehmood S, Subbaiah MV, Rao DS, Pavuluri CM, Wen JC, Reddy GM (2019) Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment. Int J Biol Macromol 136:177–188

    Article  CAS  PubMed  Google Scholar 

  41. Ding W, Zhang J, Liu Y, Guo Y, Deng T, Yu X (2021) Synthesis of granulated H4Mn5O12/chitosan with improved stability by a novel cross-linking strategy for lithium adsorption from aqueous solutions. Chem Eng J 426:131689

    Article  CAS  Google Scholar 

  42. Weijiang Z, Yzce Z, Yuvaraja G, Jiao X (2017) Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan Schiff’s base@Fe3O4 (CSB@Fe3O4) as an adsorbent: kinetics, isotherm and thermodynamic studies. Int J Biol Macromol 105:422–430

    Article  PubMed  Google Scholar 

  43. Shahraki S, Delarami HS (2018) Magnetic chitosan-(d-glucosimine methyl) benzaldehyde Schiff base for Pb2+ ion removal. Experimental and theoretical methods. Carbohydr Polym 200:211–220

    Article  CAS  PubMed  Google Scholar 

  44. Mohammadi K, Sadeghi M, Azimirad R (2017) Facile synthesis of SrFe12O19 nanoparticles and its photocatalyst application. J Mater Sci Mater Electron 28:10042–40047

    Article  CAS  Google Scholar 

  45. Sahoo JK, Konar M, Rath J, Kuimar D, Sahoo H (2020) Hexagonal strontium ferrite: cationic dye adsorption and antibacterial activity. Sep Sci Technol 55:415–430

    Article  CAS  Google Scholar 

  46. Baykal A (2014) Solvothermal synthesis of pure SrFe12O19 hexaferrite nanoplatelets. J Supercond Nov Magn 27:877–880

    Article  CAS  Google Scholar 

  47. Hedayati K, Behesht-Ara Z, Ghanbari D (2017) Preparation and characterization of various morphologies of SrFe12O19 nano-structures: investigation of magnetization and coercivity. J Mater Sci Mater Electron 28:1–9

    Article  CAS  Google Scholar 

  48. Meng X, Zhu Y, Xu S, Liu T (2016) Facile synthesis of shell–core polyaniline/SrFe12O19 composites and magnetic properties. RSC Adv 6:4946–4949

    Article  CAS  Google Scholar 

  49. Bagheri A, Halakouie H, Ghanbari D, Mousayi M, Asiabani N (2019) Strontium hexa-ferrites and polyaniline nanocomposites: studies of magnetization, coercivity, morphology, and microwave absorption. J Nanostruct 9:630–638

    CAS  Google Scholar 

  50. Wang S, Gao H, Fang L, Hu Q, Sun G, Chen X, Yu C, Tang S, Yu X, Zhao X, Sun G, Yang H (2021) Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption–photocatalytic degradation effect for methylene blue dye removal. Chem Eng J Adv 6:100089

    Article  CAS  Google Scholar 

  51. Nabiyouni G, Ahmadi A, Ghanbari D, Halakouie H (2016) SrFe12O19 ferrites and hard magnetic PVA nanocomposite: investigation of magnetization, coercivity and remanence. J Mater Sci Mater Electron 27:4297–4306

    Article  CAS  Google Scholar 

  52. Rasouli Z, Yousefi M, Bikhof Torbati M, Samadi S, Kalateh K (2020) Structural, magnetic, and microwave absorption properties of SrCexFe12−xO19/PVP composites. J Microw Power Electromagn Energy 54:19–34

    Article  Google Scholar 

  53. Yuvaraja G, Subbaiah MV (2016) Removal of Pb(II) by using magnetic chitosan-4-((pyridine-2-ylimino)methyl)benzaldehyde Schiff’s base. Int J Biol Macromol 93:408–417

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasser Fakhri Mustafa or Cui Chem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, D., Tang, X., Abdulhasanb, M.J. et al. Epichlorohydrin Crosslinked 2,4-Dihydroxybenzaldehyde Schiff Base Chitosan@SrFe12O19 (EP-DBSB-CS@SrFe12O19) Magnetic Nanocomposite for Efficient Removal of Pb(II) and Cd(II) from Aqueous Solution. J Polym Environ 30, 4201–4209 (2022). https://doi.org/10.1007/s10924-022-02505-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02505-2

Keywords

Navigation