Skip to main content
Log in

Effect of Chlorine on the Fluidity and Thermal Stability Properties of High-Titanium Slags

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The fluidity and thermal stability properties of melting slag are closely related to the smooth production of the blast furnace. In this study, the viscosity and thermal stability properties of the chlorine-containing high-titanium melting slag (CaO–SiO2–MgO–Al2O3–TiO2–CaCl2) are investigated. The concept of “Extreme Heat Release of Slag” (EHRS) is proposed to quantitatively express the change in the thermal stability of the melting slag. Fourier transform infrared (FTIR) and Raman spectroscopy is used to analyze the structure evolution. The results indicate that chlorine can reduce the viscosity and simplify the structure of melting slag. Due to the evaporation of chlorine at high temperatures, the chlorine content decreases slightly in the viscosity test process. The changing trend of viscous flow activation energy is similar to that of viscosity. Increasing chlorine content could reduce the heat capacity but increase EHRS. The larger the EHRS is, the smaller the viscosity fluctuation. In addition, the [SiO4]-tetrahedral structures and Ti–O–(Ti or Si) bonds would be destroyed. The relative area fractions of Q2 and Q3 units transform to the Q0 and Q1 units, resulting in the decrease in the degree of polymerization of melting slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q. Guibao, L. Chen, J. Zhu, X. Lv, and C. Bai: Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag. ISIJ Int., 2015, vol. 55(7), pp. 1367–76. https://doi.org/10.2355/isijinternational.55.1367.

    Article  CAS  Google Scholar 

  2. M. Hengbao, K. Jiao, and J. Zhang: The influence of basicity and TiO2 on the crystallization behavior of high Ti-bearing slags. CrystEngComm, 2020, vol. 22(2), pp. 361–70. https://doi.org/10.1039/c9ce01695c.

    Article  CAS  Google Scholar 

  3. Y. Zhiming, X. Lv, W. He, and J. Xu: Effect of TiO2 on the liquid zone and apparent viscosity of SiO2-CaO-8wt%MgO-14wt%Al2O3 system. ISIJ Int., 2017, vol. 57(1), pp. 31–36. https://doi.org/10.2355/isijinternational.ISIJINT-2016-420.

    Article  Google Scholar 

  4. P. Zhengde, X. Lv, Y. Jiang, J. Ling, and Z. Yan: Blast furnace ironmaking process with super-high TiO2 in the slag: viscosity and melting properties of the slag. Metall. Mater. Trans. B, 2019, vol. 51B(2), pp. 722–31. https://doi.org/10.1007/s11663-019-01756-0.

    Article  CAS  Google Scholar 

  5. N. Jian, S. Xu, H. Jin, Z. Wang, Y. Tu, and H. Liu: Chlorine release and migration characteristics during combustion of high chlorine coal. J. Combus. Sci. Technol., 2020, vol. 26(4), pp. 340–47. https://doi.org/10.11715/rskxjs.R202003016.

    Article  Google Scholar 

  6. Z. Xu, J. Zhang, Z. Hu, H. Zuo, and H. Guo: Effect of CaCl2 on RDI and RI of sinter. J. Iron Steel Res. Int., 2010, vol. 17(11), pp. 7–12. https://doi.org/10.1016/S1006-706X(10)60162-8.

    Article  Google Scholar 

  7. M. Okeda, M. Hasegawa, and M. Iwase: Solubilities of chlorine in CaO-SiO2-Al2O3-MgO slags: correlation between sulfide and chloride capacities. Metall. Mater. Trans. B, 2010, vol. 42(2), pp. 281–90. https://doi.org/10.1007/s11663-010-9465-2.

    Article  CAS  Google Scholar 

  8. L. Wenguo, J. Qin, X. Xing, J. Wang, and H. Zuo: Viscosity and structure evolution of CaO–SiO2–MgO–Al2O3–BaO slag with the CaO/SiO2 mass ratio of 0.9. Ceram. Int., 2021, vol. 47(23), pp. 33483–89. https://doi.org/10.1016/j.ceramint.2021.08.255.

    Article  CAS  Google Scholar 

  9. W. Zhanjun and I. Sohn: Effect of substituting CaO with BaO on the viscosity and structure of CaO-BaO-SiO2-MgO-Al2O3 slags. J. Am. Ceram. Soc., 2018, vol. 101(9), pp. 4285–96. https://doi.org/10.1111/jace.15559.

    Article  CAS  Google Scholar 

  10. S. Amitabh, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 Slags. Metall. Mater. Trans. B., 2007, vol. 38B(6), pp. 911–15.

    Google Scholar 

  11. J. Kexin, J. Zhang, Z. Wang, C. Chen, and Y. Liu: Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags. Steel Res. Int., 2017, https://doi.org/10.1002/srin.201600296.

    Article  Google Scholar 

  12. F. Xiaoyue, J. Zhang, K. Jiao, R. Xu, and K. Wang: Influence of B2O3 on viscosity and structure of low MgO slag containing titanium. Metall. Res. Technol., 2018, https://doi.org/10.1051/metal/2017103.

    Article  Google Scholar 

  13. R. Shan, J. Zhang, L. Wu, W. Liu, Y. Bai, X. Xing, B. Su, and D. Kong: Influence of B2O3 on viscosity of high Ti-bearing blast furnace slag. ISIJ Int., 2012, vol. 52(6), pp. 984–91. https://doi.org/10.2355/isijinternational.52.984.

    Article  Google Scholar 

  14. W. Wanlin, S. Dai, L. Zhou, J. Zhang, W. Tian, and J. Xu: Viscosity and structure of MgO–SiO2-based slag melt with varying B2O3 content. Ceram. Int., 2020, vol. 46(3), pp. 3631–36. https://doi.org/10.1016/j.ceramint.2019.10.082.

    Article  CAS  Google Scholar 

  15. L. Yinhe, L. Zhang, and X. Huang: Influence of CaF2 on the apparent viscosity of CaO-SiO2-MgO-Al2O3-TiO2 slags. Metall. Res. Technol., 2017, https://doi.org/10.1051/metal/2017067.

    Article  Google Scholar 

  16. C.Z. Yu, K. Jiao, J. Zhang, X. Ning, and Z.Q. Liu: Effect of TiO2 and MnO on viscosity of blast furnace slag and thermodynamic analysis. ISIJ Int., 2018, vol. 58(12), pp. 2173–79. https://doi.org/10.2355/isijinternational.ISIJINT-2018-379.

    Article  Google Scholar 

  17. Z. Jian, K. Jiao, J. Zhang, H. Ma, Y. Zong, Z. Guo, and Z. Wang: Thermal stability of molten slag in blast furnace hearth. ISIJ Int., 2021, vol. 61(8), pp. 2227–36. https://doi.org/10.2355/isijinternational.ISIJINT-2021-066.

    Article  Google Scholar 

  18. C. Zhiyu, K. Jiao, X. Ning, and J. Zhang: Novel approach to studying influences of Na2O and K2O additions on viscosity and thermodynamic properties of BF slags. Metall. Mater. Trans. B, 2019, vol. 50B(3), pp. 1399–1406. https://doi.org/10.1007/s11663-019-01565-5.

    Article  CAS  Google Scholar 

  19. J. Kexin, Z. Chang, C. Chen, and J. Zhang: Thermodynamic properties and viscosities of CaO-SiO2-MgO-Al2O3 slags. Metall. Mater. Trans. B, 2019, vol. 50B(2), pp. 1012–22. https://doi.org/10.1007/s11663-018-1490-6.

    Article  CAS  Google Scholar 

  20. P. Zhuogang, X. Xing, J. Zheng, Y. Du, S. Ren and M. Lv. The effect of TiO2 on the thermal stability and structure of high acidity slag for mineral wool production. J Non-Cryst Solids, 2021. 571. https://doi.org/10.1016/j.jnoncrysol.2021.121071.

  21. M. Hongwang, S. Zhang, Q. Lv, and Y. Sun: Experimental study on viscosity of high Alumina titanium blast furnace slag under neutral atmosphere. Iron Steel, 2021, vol. 47(6), pp. 18–22. https://doi.org/10.1007/s11783-011-0280-z.

    Article  CAS  Google Scholar 

  22. Z. Jianlu, X. Xing, Z. Pang, S. Wang, Y. Du, and M. Lv: Effect of Na2CO3, HF, and CO2 treatment on the regeneration of exhausted activated carbon used in sintering flue gas. ACS Omega, 2021, vol. 6(39), pp. 25762–71. https://doi.org/10.1021/acsomega.1c04182.

    Article  CAS  Google Scholar 

  23. W. Cui, J. Zhang, H. Zhang, K. Jiao, J. Yang, and K. Chou: Effect of chlorine on the viscosities and structures of blast furnace slags. Ironmak. Steelmak., 2016, vol. 43(10), pp. 769–74. https://doi.org/10.1080/03019233.2016.1234541.

    Article  CAS  Google Scholar 

  24. L. Sunghee and D.J. Min: Anionic effect of chloride, fluoride, and sulfide ions on the viscosity of slag melt. J. Am. Ceram. Soc., 2017, vol. 100(6), pp. 2543–52. https://doi.org/10.1111/jace.14787.

    Article  CAS  Google Scholar 

  25. S. Zhenghua, X. Xing, S. Wang, M. Lv, J. Li, and T. Li: Effect of K-modified blue coke-based activated carbon on low temperature catalytic performance of supported Mn–Ce/activated carbon. ACS Omega, 2022, vol. 7(10), pp. 8798–8808. https://doi.org/10.1021/acsomega.1c07076.

    Article  CAS  Google Scholar 

  26. Z. Guohua, K. Chou, and J. Zhang: Influence of TiO2 on viscosity of aluminosilicate melts. Ironmak. Steelmak., 2013, vol. 41(1), pp. 47–50. https://doi.org/10.1179/1743281212Y.0000000093.

    Article  CAS  Google Scholar 

  27. G. Zefeng, L. Kong, J. Bai, H. Zhao, X. Cao, H. Li, Z. Bai, B. Meyer, S. Guhl, P. Li, and W. Li: Effect of CaO/Fe2O3 ratio on slag viscosity behavior under entrained flow gasification conditions. Fuel, 2019, https://doi.org/10.1016/j.fuel.2019.116129.

    Article  Google Scholar 

  28. X. Feng, D. Lu, H. Yang, and D. Dreisinger: Solvent extraction of silver and gold from alkaline cyanide solution with LIX 7950. Miner. Process Extr. Metall., 2013, vol. 35(4), pp. 229–38. https://doi.org/10.1080/08827508.2013.825615.

    Article  CAS  Google Scholar 

  29. S. Dipankar and A.K. Chandra: Cl···Cl halogen bonding: nature and effect of substituent at electron donor Cl atom. ChemistrySelect, 2020, vol. 5(2), pp. 554–63. https://doi.org/10.1002/slct.201903546.

    Article  CAS  Google Scholar 

  30. L.A. Swansbury, G. Mountjoy, X. Chen, N. Karpukhina, and R. Hill: Modeling the onset of phase separation in CaO-SiO2-CaCl2 chlorine-containing silicate glasses. J. Phys. Chem. B, 2017, vol. 121(22), pp. 5647–53. https://doi.org/10.1021/acs.jpcb.7b02986.

    Article  CAS  Google Scholar 

  31. X. Xiangdong, P. Zhuogang, M. Chuan, W. Sha, and J. Jiantao: Effect of MgO and BaO on viscosity and structure of blast furnace slag. J. Non-Cryst. Solids, 2020, vol. 530, p. 119801. https://doi.org/10.1016/j.jnoncrysol.2019.119801.

    Article  CAS  Google Scholar 

  32. B.O. Mysen, F.J. Ryerson, and D. Virgo: The influence of TiO2 on the structure and derivative properties of silicate melts. Am Mineral., 1980, vol. 1150(65), p. 1. https://doi.org/10.1007/BF02310052.

    Article  Google Scholar 

  33. J.H. Park, D.J. Min, and H.S. Song: The effect of CaF2 on the viscosities and structures of CaO-SiO2(-MgO)-CaF2 slags. Metall. Mater. Trans. B, 2002, vol. 33B(4), pp. 723–29. https://doi.org/10.1007/s11663-002-0026-1.

    Article  CAS  Google Scholar 

  34. C. Ziwei, H. Wang, Y. Sun, L. Liu, and X. Wang: Insight into the relationship between viscosity and structure of CaO-SiO2-MgO-Al2O3 Molten slags. Metall. Mater. Trans. B., 2019, vol. 50B(6), pp. 2930–41. https://doi.org/10.1007/s11663-019-01660-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The present work was financially supported by the Natural Science Basic foundation of China (Program No. 52174325) and China Postdoctoral Science Found (Grant No. 2019M663932XB). The authors gratefully acknowledge their support.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Xing or Ming Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Xing, X., Li, J. et al. Effect of Chlorine on the Fluidity and Thermal Stability Properties of High-Titanium Slags. Metall Mater Trans B 53, 2942–2952 (2022). https://doi.org/10.1007/s11663-022-02577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02577-4

Navigation