Skip to main content
Log in

Radiation Stability of Nickel Doped Solar Cells

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of doping with nickel on the radiation stability of silicon solar cells has been studied within a γ-radiation dose range of 105–108 rad. It has been shown that the diffusion doping of silicon with impurity nickel atoms increases the radiation stability of the parameters of silicon solar cells. It is implied that a reason of increase in the radiation stability of such solar cells is the existence of clusters, which are composed of impurity nickel atoms and serve as sinks for radiation defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. F. P. Korshunov, G. V. Gatal’skin, and G. M. Ivanov, Radiation Effects in Semiconductor Devices (Nauka Tekhnika, Minsk, 1978) [in Russian].

    Google Scholar 

  2. Sh. Makhkamov, R. A. Muminov, M. Karimov, N. A. Tursunov, A. R. Sattiev, M. N. Erdonov, and Kh. M. Kholmedov, Appl. Sol. Energy 49, 62 (2013).

    Article  Google Scholar 

  3. Sh. Makhkamov, R. A. Muminov, M. Karimov, K. P. Abdurakhmanov, N. A. Tursunov, A. R. Sattiev, M. N. Erdonov, and Kh. M. Kholmedov, Appl. Sol. Energy 49, 185 (2013).

    Article  Google Scholar 

  4. Sh. Makhkamov, M. Karimov, Z. M. Khakimov, N. Dj. Odilov, Sh. A. Makhmudov, A. O. Kurbanov, and K. A. Begmatov, Rad. Effects Defects Solids 160, 349 (2005).

    Article  ADS  Google Scholar 

  5. A. V. Zastavnoi and V. M. Korol’, Sov. Phys. Semicond. 23, 228 (1989).

    Google Scholar 

  6. F. M. Talipov, Semiconductors 31, 433 (1997).

    Article  ADS  Google Scholar 

  7. Yu. A. Karpov, V. V. Petrov, V. S. Prosolovich, and V. D. Tkachev, Sov. Phys. Semicond. 17, 981 (1983).

    Google Scholar 

  8. M. K. Bakhadyrkhanov, Kh. M. Iliev, K. S. Ayupov, B. A. Abdurakhmonov, P. Yu. Krivenko, and R. L. Kholmukhamedov, Inorg. Mater. 47, 962 (2011).

    Article  Google Scholar 

  9. M. K. Bakhadyrkhanov, K. A. Ismailov, B. K. Ismaylov, and Z. M. Saparniyazova, Semicond. Phys. Quantum Electron. Optoelectron. 21, 392 (2018).

    Article  Google Scholar 

  10. M. K. Bakhadyrkhanov, B. K. Ismaylov, S. A. Tachilin, K. A. Ismailov, and N. F. Zikrillaev, Semicond. Phys. Quantum Electron. Optoelectron. 23, 361 (2020).

    Article  Google Scholar 

  11. B. A. Abdurakhmanov, M. K. Bakhadirkhanov, K. S. Ayupov, H. M. Iliyev, E. B. Saitov, A. Mavlyanov, and H. U. Kamalov, Nanosci. Nanotechnol. 4, 23 (2014).

    Google Scholar 

  12. K. M. Iliev, Z. M. Saparniyazova, K. A. Ismailov, O. E. Sattarov, and S. Nigmonkhadzhaev, Surf. Eng. Appl. Electrochem. 47, 385 (2011). https://doi.org/10.3103/s1068375511050103

    Article  Google Scholar 

  13. S. S. Nasriddinov, J. Nano- Electron. Phys. 7 (3), 5 (2015).

    Google Scholar 

  14. C. Z. Zainabidinov and A. O. Kurbanov, Uzb. Fiz. Zh. 20 (2), 105 (2018).

    Google Scholar 

  15. M. K. Bakhadyrkhanov, S. B. Isamov, Z. T. Kenzhaev, and S. V. Koveshnikov, Tech. Phys. Lett. 45, 959 (2019).

    Article  ADS  Google Scholar 

  16. M. K. Bakhadyrkhanov and Z. T. Kenzhaev, Tech. Phys. 66, 851 (2021).

    Article  Google Scholar 

  17. M. K. Bakhadyrkhanov, Z. T. Kenzhaev, S. V. Koveshnikov, K. S. Ayupov, and E. Zh. Kosbergenov, Semiconductors 56 (2022, in press).

  18. M. K. Bakhadyrkhanov, Z. T. Kenzhaev, K. A. Ismailov, and S. V. Koveshnikov, Geliotekhnika 56, 322 (2020).

    Google Scholar 

  19. M. K. Bakhadyrkhanov, Z. T. Kenzhaev, Kh. S. Turekeev, B. O. Isakov, and A. A. Usmonov, Tech. Phys. 66 (2021, in press).

  20. V. V. Lukjanitsa, Semiconductors 37, 404 (2003). https://doi.org/10.1134/1.1568459

    Article  ADS  Google Scholar 

  21. A. A. Istratov, P. Zhang, R. J. McDonald, A. R. Smith, M. Seacrist, J. Moreland, J. Shen, R. Wahlich, and E. R. Weber, J. Appl. Phys. 97, 023505 (2005). https://doi.org/10.1063/1.1836852

    Article  ADS  Google Scholar 

  22. J. Lindroos, D. P. Fenning, D. J. Backlund, E. Verlage, A. Gorgulla, S. K. Estreicher, H. Savin, and T. Buonassisi, J. Appl. Phys. 113, 204906 (2013). https://doi.org/10.1063/1.4807799

    Article  ADS  Google Scholar 

  23. B. K. Ismailov, A. B. Kamalov, and D. Zh. Asanov, Pribory 252 (6), 25 (2021).

    Google Scholar 

  24. M. K. Bakhadirkhanov and B. K. Ismailov, Pribory 240 (6), 44 (2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely and profoundly grateful to Professor M.K. Bakhadyrkhanov for valuable advices given in the process of study and the discussion of obtained results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zh. Kosbergenov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismailov, K.A., Kenzhaev, Z.T., Koveshnikov, S.V. et al. Radiation Stability of Nickel Doped Solar Cells. Phys. Solid State 64, 154–156 (2022). https://doi.org/10.1134/S1063783422040011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422040011

Keywords:

Navigation