Skip to main content
Log in

Clinical Pharmacokinetics of Metoprolol: A Systematic Review

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Metoprolol is recommended for therapeutic use in multiple cardiovascular conditions, thyroid crisis, and circumscribed choroidal hemangioma. A detailed systematic review on the metoprolol literature would be beneficial to assess all pharmacokinetic parameters in humans and their respective effects on patients with hepatic, renal, and cardiovascular diseases. This review combines all the pharmacokinetic data on metoprolol from various accessible studies, which may assist in clinical decision making.

Methodology

The Google Scholar and PubMed databases were searched to screen articles associated with the clinical pharmacokinetics of metoprolol. The comprehensive literature search retrieved 41 articles including data on plasma concentration–time profiles after intravenous and oral (immediate-release, controlled-release, slow-release, or extended-release) routes of administration, and at least one pharmacokinetic parameter was reported in all studies included.

Results

Out of 41 retrieved articles, six were after intravenous and 12 were after oral administration in healthy individuals. The oral studies depict a dose-dependent increase in maximum plasma concentration (Cmax), time to reach maximum plasma concentration (Tmax), and area under the concentration–time curve (AUC). Two studies were conducted in R- and S-enantiomers, in which one study reported the gender differences, depicting greater Cmax and AUC among women, whereas in another study S-metoprolol was found to have higher values of Cmax, Tmax, and AUC in comparison with R-metoprolol. Results in different diseases depicted that after IV administration of 20 mg, patients with renal impairment showed an increase in clearance (CL) (60 L/h vs 48 L/h) compared with healthy subjects, whereas a decrease in CL (36.6 ± 7.8 L/h vs 48 ± 6.6 L/h) was seen in patients with hepatic cirrhosis at a similar dose. In comparison with a single oral dose following administration of 15 mg IV in three divided doses, patients having an acute myocardial infarction (AMI) showed an increase in Cmax (823 nmol/L vs 248 nmol/L) at a steady state. Twenty different studies have reported significant changes in CL, Cmax, and AUC of metoprolol when it is co-administered with other drugs. One study has reported a drug–food interaction for metoprolol but no significant changes were seen in the Cmax and AUC.

Conclusion

This review summarizes all the pharmacokinetic parameters of metoprolol after pooling up-to-date data from all the studies available. The summarized pharmacokinetic data presented in this review can assist in developing and evaluating pharmacokinetic models of metoprolol. Moreover, this data can provide practitioners with an insight into dosage adjustments among the diseased populations and can assist in preventing potential adverse drug reactions. This review can also help avoid side effects and drug–drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Metoprolol. [cited; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Metoprolol. Accessed 10 Oct 2021.

  2. Brogden RN, Heel RC, Speight TM, Avery GS. Metoprolol: a review of its pharmacological properties and therapeutic efficacy in hypertension and angina pectoris. Drugs. 1977;14(5):321–48.

  3. Morris J, Dunham A. Metoprolol. Treasure Island: StatPearls Publishing; 2018.

    Google Scholar 

  4. Jorge R, Chaves L, da Silva CA, et al. Alternative management of circumscribed choroidal hemangioma using intravitreal metoprolol. Retinal Cases Brief Reports. 2022;16(1):106–10.

    Article  PubMed  Google Scholar 

  5. Tubic-Grozdanis M, Bolger MB, Langguth P, et al. Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds. AAPS J. 2008;10(1):213–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Regårdh C-G, Johnsson G. Clinical pharmacokinetics of metoprolol. Clin Pharmacokinet. 1980;5(6):557–69.

    Article  PubMed  Google Scholar 

  7. Berger B, Bachmann F, Duthaler U, et al. Cytochrome P450 enzymes involved in metoprolol metabolism and use of metoprolol as a CYP2D6 phenotyping probe drug. Front Pharmacol. 2018;9:774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lukacova V, Woltosz WS, Bolger MB. Prediction of modified release pharmacokinetics and pharmacodynamics from in vitro, immediate release, and intravenous data. AAPS J. 2009;11(2):323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brocker CN, Velenosi T, Flaten HK, et al. Metabolomic profiling of metoprolol hypertension treatment reveals altered gut microbiota-derived urinary metabolites. Hum Genom. 2020;14(1):1–9.

    Article  CAS  Google Scholar 

  10. Regårdh CG, Borg KO, Johansson R, et al. Pharmacokinetic studies on the selectiveβ 1-receptor antagonist metoprolol in man. J Pharmacokinet Biopharm. 1974;2(4):347–64.

    Article  PubMed  Google Scholar 

  11. Mateus A, Matsson PR, Artursson P. A high-throughput cell-based method to predict the unbound drug fraction in the brain. J Med Chem. 2014;57(7):3005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benfield P, Clissold SP, Brogden RN. Metoprolol. Drugs. 1986;31(5):376–429.

    Article  CAS  PubMed  Google Scholar 

  13. Neil-Dwyer G, Bartlett J, McAinsh J, et al. Beta-adrenoceptor blockers and the blood-brian barrier. Br J Clin Pharmacol. 1981;11(6):549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Younis W, Asif H, Sharif A, et al. Traditional medicinal plants used for respiratory disorders in Pakistan: a review of the ethno-medicinal and pharmacological evidence. Chin Med. 2018;13(1):1–29.

    CAS  Google Scholar 

  15. Lasser KE, Allen PD, Woolhandler SJ, et al. Timing of new black box warnings and withdrawals for prescription medications. JAMA. 2002;287(17):2215–20.

    Article  PubMed  Google Scholar 

  16. Regårdh C-G, Jordö L, Ervik M, et al. Pharmacokinetics of metoprolol in patients with hepatic cirrhosis. Clin Pharmacokinet. 1981;6(5):375–88.

    Article  PubMed  Google Scholar 

  17. Jordö L, Attman P, Aurell M, et al. Pharmacokinetic and pharmacodynamic properties of metoprolol in patients with impaired renal function. Clin Pharmacokinet. 1980;5(2):169–80.

    Article  PubMed  Google Scholar 

  18. Meloche M, Khazaka M, Kassem I, et al. CYP2D6 polymorphism and its impact on the clinical response to metoprolol: a systematic review and meta-analysis. Br J Clin Pharmacol. 2020;86(6):1015–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Higgins J. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. www cochrane-handbook org. 2011.

  20. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.

    Article  PubMed  Google Scholar 

  21. Clark HD, Wells GA, Huët C, et al. Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials. 1999;20(5):448–52.

    Article  CAS  PubMed  Google Scholar 

  22. Al-Dirini RMA, Thewlis D, Paul G. A comprehensive literature review of the pelvis and the lower extremity FE human models under quasi-static conditions. Work. 2012;41(Supplement 1):4218–29.

    Article  PubMed  Google Scholar 

  23. Regårdh C-G, Johnsson G, Jordö L, et al. Plasma concentrations and beta-blocking effects in normal volunteers after intravenous doses of metoprolol and propranolol. J Cardiovasc Pharmacol. 1980;2(6):715–23.

    Article  PubMed  Google Scholar 

  24. Godbillon J, Evard D, Vidon N, et al. Investigation of drug absorption from the gastrointestinal tract of man. III. Metoprolol in the colon. Br J Clin Pharmacol. 1985;19(S2):113S-S118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Richard J, Cardot J, Godbillon J. Inter-and intra-subject variability of metoprolol kinetics after intravenous administration. Eur J Drug Metab Pharmacokinet. 1994;19(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  26. Larsson M, Landahl S, Lundborg P, et al. Pharmacokinetics of metoprolol in healthy, elderly, non-smoking individuals after a single dose and two weeks of treatment. Eur J Clin Pharmacol. 1984;27(2):217–22.

    Article  CAS  PubMed  Google Scholar 

  27. Kendall M, John V, Quarterman C, et al. A single and multiple dose pharmacokinetic and pharmacodynamic comparison of conventional and slow-release metoprolol. Eur J Clin Pharmacol. 1980;17(2):87–92.

    Article  CAS  PubMed  Google Scholar 

  28. Sandberg A, Blomqvist I, Jonsson U, et al. Pharmacokinetic and pharmacodynamic properties of a new controlled-release formulation of metoprolol: a comparison with conventional tablets. Eur J Clin Pharmacol. 1988;33(1):S9–14.

    Article  CAS  PubMed  Google Scholar 

  29. Oosterhuis B, Jonkman J, Kerkhof F. Pharmacokinetic and pharmacodynamic comparison of a new controlled-release formulation of metoprolol with a traditional slow-release formulation. Eur J Clin Pharmacol. 1988;33(1):S15–8.

    Article  CAS  PubMed  Google Scholar 

  30. Oosterhuis B, Jonkman J, Zuiderwijk P, et al. A pharmacokinetic and pharmacodynamic comparison of metoprolol CR/ZOK with a conventional slow release preparation. J Clin Pharmacol. 1990;30(S2):S33–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wieselgren I, Lundborg P, Sandberg A, et al. Pharmacokinetic and pharmacodynamic evaluation of metoprolol controlled release (CR/ZOK) 50 mg in young subjects. J Clin Pharmacol. 1990;30(S2):S28–32.

    Article  CAS  PubMed  Google Scholar 

  32. Lücker P, Moore G, Wieselgren I, et al. Pharmacokinetic and pharmacodynamic comparison of metoprolol CR/ZOK once daily with conventional tablets once daily and in divided doses. J Clin Pharmacol. 1990;30(S2):S17–27.

    Article  PubMed  Google Scholar 

  33. Darmansjah I, Wong E, Setiawati A, et al. Pharmacokinetic and pharmacodynamic properties of controlled release (CR/ZOK) metoprolol in healthy Oriental subjects: a comparison with conventional formulations of metoprolol and atenolol. J Clin Pharmacol. 1990;30(S2):S39–45.

    Article  CAS  PubMed  Google Scholar 

  34. Dimenäs E, Dahlöf C, Heibel B, et al. Subjective symptoms and pharmacokinetics/dynamics of metoprolol CR in elderly subjects—a comparison with atenolol. Eur J Clin Pharmacol. 1990;38(6):571–8.

    Article  PubMed  Google Scholar 

  35. Lundborg P, Abrahamsson B, Wieselgren I, et al. The pharmacokinetics and pharmacodynamics of metoprolol after conventional and controlled-release administration in combination with hydrochlorothiazide in healthy volunteers. Eur J Clin Pharmacol. 1993;45(2):161–3.

    Article  CAS  PubMed  Google Scholar 

  36. Jin S, Chung H, Chung M, et al. Influence of CYP2D6* 10 on the pharmacokinetics of metoprolol in healthy Korean volunteers. J Clin Pharm Ther. 2008;33(5):567–73.

    Article  CAS  PubMed  Google Scholar 

  37. Luzier AB, Killian A, Wilton JH, et al. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther. 1999;66(6):594–601.

    Article  CAS  PubMed  Google Scholar 

  38. Cerqueira PM, Cesarino EJ, Mateus FH, et al. Enantioselectivity in the steady-state pharmacokinetics of metoprolol in hypertensive patients. Chirality. 1999;11(7):591–7.

    Article  CAS  PubMed  Google Scholar 

  39. Held P, Regårdh C-G. Metoprolol in acute myocardial infarction. A pharmacokinetic and pharmacodynamic study. Eur J Clin Pharmacol. 1986;31(3):261–5.

    Article  CAS  PubMed  Google Scholar 

  40. Everts B, Karlson B, Herlitz J, et al. Effects and pharmacokinetics of high dose metoprolol on chest pain in patients with suspected or definite acute myocardial infarction. Eur J Clin Pharmacol. 1997;53(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  41. Kendall M, Quarterman C, Jack D, et al. Metoprolol pharmacokinetics and the oral contraceptive pill. Br J Clin Pharmacol. 1982;14(1):120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jack DB, Kendall MJ, Dean S, et al. The effect of hydralazine on the pharmacokinetics of three different beta adrenoceptor antagonists: metoprolol, nadolol, and acebutolol. Biopharm Drug Dispos. 1982;3(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  43. Gangji D, Juvent M, Niset G, et al. Study of the influence of nifedipine on the pharmacokinetics and pharmacodynamics of propranolol, metoprolol and atenolol. Br J Clin Pharmacol. 1984;17(S1):29S-35S.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kelly J, Salem S, Kinney C, et al. Effects of ranitidine on the disposition of metoprolol. Br J Clin Pharmacol. 1985;19(2):219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schaaf L, Campbell S, Mayersohn M, et al. Influence of smoking and gender on the disposition kinetics of metoprolol. Eur J Clin Pharmacol. 1987;33(4):355–61.

    Article  CAS  PubMed  Google Scholar 

  46. Wagner F, Kalusche D, Trenk D, et al. Drug interaction between propafenone and metoprolol. Br J Clin Pharmacol. 1987;24(2):213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chellingsworth M, Laugher S, Akhlaghi S, et al. The effects of ranitidine and cimetidine on the pharmacokinetics and pharmacodynamics of metoprolol. Aliment Pharmacol Ther. 1988;2(6):521–7.

    Article  CAS  PubMed  Google Scholar 

  48. Tateishi T, Nakashima H, Shitou T, et al. Effect of diltiazem on the pharmacokinetics of propranolol, metoprolol and atenolol. Eur J Clin Pharmacol. 1989;36(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  49. Hemeryck A, Lefebvre RA, De Vriendt C, et al. Paroxetine affects metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther. 2000;67(3):283–91.

    Article  CAS  PubMed  Google Scholar 

  50. Hamelin BA, Bouayad A, Méthot J, et al. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther. 2000;67(5):466–77.

    Article  CAS  PubMed  Google Scholar 

  51. Somer M, Kallio J, Pesonen U, et al. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol. 2000;49(6):549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Werner U, Werner D, Rau T, et al. Celecoxib inhibits metabolism of cytochrome P450 2D6 substrate metoprolol in humans. Clin Pharmacol Ther. 2003;74(2):130–7.

    Article  CAS  PubMed  Google Scholar 

  53. Damy T, Pousset F, Caplain H, et al. Pharmacokinetic and pharmacodynamic interactions between metoprolol and dronedarone in extensive and poor CYP2D6 metabolizers healthy subjects. Fundam Clin Pharmacol. 2004;18(1):113–23.

    Article  CAS  PubMed  Google Scholar 

  54. Werner D, Wuttke H, Fromm MF, et al. Effect of amiodarone on the plasma levels of metoprolol. Am J Cardiol. 2004;94(10):1319–21.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma A, Pibarot P, Pilote S, et al. Modulation of metoprolol pharmacokinetics and hemodynamics by diphenhydramine coadministration during exercise testing in healthy premenopausal women. J Pharmacol Exp Ther. 2005;313(3):1172–81.

    Article  CAS  PubMed  Google Scholar 

  56. Goryachkina K, Burbello A, Boldueva S, et al. Inhibition of metoprolol metabolism and potentiation of its effects by paroxetine in routinely treated patients with acute myocardial infarction (AMI). Eur J Clin Pharmacol. 2008;64(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  57. Preskorn SH, Greenblatt DJ, Flockhart D, et al. Comparison of duloxetine, escitalopram, and sertraline effects on cytochrome P450 2D6 function in healthy volunteers. J Clin Psychopharmacol. 2007;27(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Zhou L, Dutreix C, et al. Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia. Br J Clin Pharmacol. 2008;65(6):885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parker RB, Soberman JE. Effects of paroxetine on the pharmacokinetics and pharmacodynamics of immediate-release and extended-release metoprolol. Pharmacotherapy. 2011;31(7):630–41.

    Article  CAS  PubMed  Google Scholar 

  60. Cho D-Y, Bae SH, Lee JK, et al. Effect of the potent CYP2D6 inhibitor sarpogrelate on the pharmacokinetics and pharmacodynamics of metoprolol in healthy male Korean volunteers. Xenobiotica. 2015;45(3):256–63.

    Article  CAS  PubMed  Google Scholar 

  61. Evard D, Vidon N, Godbillon J, et al. Investigation of drug absorption from the gastrointestinal tract of man. IV. Influence of food and digestive secretions on metoprolol jejunal absorption. Br J Clin Pharmacol. 1985;19(S2):119S-S125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No external funding was used in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial contributions to the design, extraction, analysis, and interpretation of data and have actively participated in drafting and revising the article. All authors agreed to submit the final version to the journal and agreed to be accountable for all the aspects of the work.

Corresponding author

Correspondence to Muhammad Fawad Rasool.

Ethics declarations

Conflict of interest

Ammara Zamir, Iltaf Hussain, Anees ur Rehman, Waseem Ashraf, Imran, Hamid Saeed, Abdul Majeed, Faleh Alqahtani, and Muhammad Fawad Rasool declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All the data used for this publication is either presented in the main article or is available as supplementary information.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 70 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamir, A., Hussain, I., ur Rehman, A. et al. Clinical Pharmacokinetics of Metoprolol: A Systematic Review. Clin Pharmacokinet 61, 1095–1114 (2022). https://doi.org/10.1007/s40262-022-01145-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01145-y

Navigation