Skip to main content

Advertisement

Log in

Bench-Scale Electrowinning of Electrolytic Manganese Dioxide Using Ferruginous Mn Ores as Precursor

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Bench-scale electrowinning of electrolytic manganese dioxide was carried out using the manganese sulfate electrolyte generated through SO2 leaching of low-grade ferruginous manganese ore. The effect of different electrowinning process parameters on the current efficiency and specific energy consumption was studied. Results indicated that the current density, electrolyte temperature, and free acid concentration of electrolyte have a strong effect on the current efficiency and specific energy consumption. An electrolyte temperature of 90 ± 2 °C, current density of 9 mA/cm2, anode-to-cathode distance of 3 cm, electrolyte’s initial pH of 6, and free acid concentration at 15 to 20 g/L were found to be the optimum conditions for EMD electrowinning. Under the optimized electrowinning conditions, a current efficiency of 93 pct and specific energy consumption of 1.4 kWh/kg EMD were realized. The produced EMD deposit was found to have a purity of 92.4 pct and a γ crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.Z. Jacobson: Energy Environ. Sci., 2009, vol. 2, pp. 148–73.

    Article  CAS  Google Scholar 

  2. R.A. Badwawi, M. Abusara, and T. Mallick: Smart Sci., 2015, vol. 3, pp. 127–38.

    Article  Google Scholar 

  3. A. Al-Dousari, W. Al-Nassar, A. Al-Hemoud, A. Alsaleh, A. Ramadan, N. Al-Dousari, and M. Ahmed: Energy, 2019, vol. 176, pp. 184–94.

    Article  Google Scholar 

  4. M.B. Lim, T.N. Lambert, and B.R. Chalamala: Mater. Sci. Eng. R Rep., 2021, vol. 143, p. 100593.

    Article  Google Scholar 

  5. K.C. Divya and J. Østergaard: Electr. Power Syst. Res., 2009, vol. 79, pp. 511–20.

    Article  Google Scholar 

  6. IRENA, Electricity storage and renewables: costs and markets to 2030." Abu Dhabi.: Int Renew Energy Agency, 2017

  7. M.C. Argyrou, P. Christodoulides, and S.A. Kalogirou: Renew. Sustain. Energy Rev., 2018, vol. 94, pp. 804–21.

    Article  Google Scholar 

  8. J. Shin, J.K. Seo, R. Yaylian, A. Huang, and Y.S. Meng: Int. Mater. Rev., 2020, vol. 65, pp. 356–87.

    Article  CAS  Google Scholar 

  9. A. Li, H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, and R. Nakamura: Angew. Chem., 2019, vol. 131, pp. 5108–12.

    Article  Google Scholar 

  10. G.W. Nichols: Trans. Electrochem. Soc., 1932, vol. 62, p. 393.

    Article  Google Scholar 

  11. K. Takahashi and A. Kozawa: J. Electrochem. Soc. Jpn., 1969, vol. 37, pp. 57–63.

    Article  CAS  Google Scholar 

  12. J.P. Rethinaraj and S. Visvanathan: J. Power Sources, 1993, vol. 42, pp. 335–43.

    Article  CAS  Google Scholar 

  13. A. Biswal, B. Nayak, B. Dash, K. Sanjay, T. Subbaiah and B. K. Mishra: Eur. Metall. Conf., EMC 2011, pp. 1323-34.

  14. A. Biswal, K. Sanjay, M.K. Ghosh, T. Subbaiah, and B.K. Mishra: Hydrometallurgy, 2011, vol. 110, pp. 44–49.

    Article  CAS  Google Scholar 

  15. M.A.R. Önal, L. Panda, P. Kopparthi, V. Singh, P. Venkatesan, and C.R. Borra: Minerals, 2021, vol. 11, p. 712.

    Article  Google Scholar 

  16. A. Biswal, B.C. Tripathy, K. Sanjay, D. Meyrick, T. Subbaiah, and M. Minakshi: J. Solid State Electrochem., 2013, vol. 17, pp. 3191–98.

    Article  CAS  Google Scholar 

  17. Manganese ore: vision 2020 and beyond (Ministry of Mines, Govt. of India, Indian Bureau of Mine) https://ibm.gov.in/writereaddata/files/11052014103838Manganese_Ore_Vision_2020_and_Beyond.pdf Accessed 14 December 2021

  18. L. Deng, B. Qu, S.J. Su, S.L. Ding, and W.Y. Sun: Arab. J. Sci. Eng., 2019, vol. 44, pp. 5335–44.

    Article  CAS  Google Scholar 

  19. W.Y. Sun, S.J. Su, Q.Y. Wang, and S.L. Ding: Hydrometallurgy, 2013, vol. 133, pp. 118–25.

    Article  CAS  Google Scholar 

  20. N. Chow, A. Nacu, D. Warkentin, I. Aksenov and H. Teh, The recovery of manganese from low grade resources: bench scale metallurgical test program completed (Kemetco Research Inc, 2010), http://congnghe-sx.com/upload/files/American-Manganese-Phase-II-August-19-2010-Final-Report-Internet-Version-V2.pdf Accessed 14 Dec 2021.

  21. A.G. Kholmogorov, A.M. Zhyzhaev, U.S. Kononov, G.A. Moiseeva, and G.L. Pashkov: Hydrometallurgy, 2000, vol. 5, pp. 1–1.

    Article  Google Scholar 

  22. V.K. Kallam, N. Pandey, S.K. Tripathy and A. Biswas: Min. Metall. Explor., 2022, pp. 1-11.

  23. S.R. Rajkumar, M. Alagar, S. Somasekaran, and S.R. Ravisankar: Int. J. Comput. Sci., 2015, vol. 2, pp. 1–1.

    Article  Google Scholar 

  24. Dr Mark Cooksey, Optimising electrowinning operations, https://research.csiro.au/resourcesandsustainability/electrowinning-optimisation-to-increase-metal-production/ Accessed 29 April 2022

  25. K.I. Popov, S.S. Djokić, and B.N. Grgur: Fundamental Aspects of Electrometallurgy, 1st ed. Springer, Boston, MA, 2002, pp. 29–100.

    Google Scholar 

  26. S.D. Schwoebel, M. Mueller, T. Mehner, and T. Lampke: Axioms, 2022, vol. 11, p. 53.

    Article  Google Scholar 

  27. S. Glasstone: Trans. Electrochem. Soc., 1931, vol. 59, p. 277.

    Article  Google Scholar 

  28. E. Preisler: J. Appl. Electrochem., 1976, vol. 6, pp. 311–20.

    Article  CAS  Google Scholar 

  29. X. Xia, H. Li, and Z.H. Chen: J. Electrochem. Soc., 1989, vol. 136, p. 266.

    Article  CAS  Google Scholar 

  30. A kind of method that optical electro-chemistry metallurgy prepares manganese dioxide, Chinese Patent CN108707920.

  31. J.P. Rethinaraj and S. Visvanathan: Mater. Chem. Phys., 1991, vol. 27, pp. 337–49.

    Article  CAS  Google Scholar 

  32. D. Pletcher and F.C. Walsh: Industrial Electrochemistry, 2nd ed. Springer, Dordrecht, 2012.

    Google Scholar 

  33. C. Liu, Z. Sun, G. Lu, X. Song, Y. Ding, and J. Yu: Can. J. Chem. Eng., 2014, vol. 92, pp. 1197–1206.

    Article  CAS  Google Scholar 

  34. W.F. Linke, A. SeidellL: Solubilities of Inorganic and Metal-organic Compounds, 4th ed., American Chemical Society, Washington, DC, vol. I: 1958, vol. II: 1965.

  35. G. Azimi: Evaluating the potential of scaling due to calcium compounds in hydrometallurgical processes (University of Toronto) 2010, https://tspace.library.utoronto.ca/handle/1807/24672 Accessed 14 December 2021

  36. K. Takahashi and A. Kozawa: JOM, 1970, vol. 22, pp. 64–67.

    Article  CAS  Google Scholar 

  37. A. Biswal, B.C. Tripathy, K. Sanjay, T. Subbaiah, and M. Minakshi: RSC Adv., 2015, vol. 5, pp. 58255–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr Vinay V Mahashabde, Chief, R&D and Product Technology, Tata Steel for giving us the permission to publish this article. We thank Dr Saurabh Kundu, Chief, Process Research, R&D for his support and motivation. We thank Mr Ranjeet Singh, Mr Sanjeet Kumar Rajak, and Ms Samvedana for their support in the characterization of the test samples. We also thank Mr Binod Kumar Sharma and Mr Gour Chand Pal from R&D for their assistance while carrying out the experimental work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Reddy Kallam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy Kallam, V.K., Patel, M., Tripathy, S.K. et al. Bench-Scale Electrowinning of Electrolytic Manganese Dioxide Using Ferruginous Mn Ores as Precursor. Metall Mater Trans B 53, 3003–3012 (2022). https://doi.org/10.1007/s11663-022-02581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02581-8

Navigation