Skip to main content
Log in

Interaction Between Oxide Inclusions and Low-Density Steel During Heat Treatment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A novel liquid-metal-suction (LMS) method was performed to prepare diffusion couple specimens. The Al2O3/steel and MgO/steel interface characteristics were investigated after heat treatment at 1373 K (1100 °C) for 10 hours using an electron probe microanalyzer (EPMA) and scanning electron microscopy (SEM). The results indicated that the bulk oxide and steel combined tightly. After heat treatment, the diffusion of oxygen from the oxide to the steel matrix resulted in the formation of oxide particles in the particle precipitation zone (PPZ) on the steel side. At the Al2O3/steel interface, fine Al2O3 and coarse Al2O3 were observed in the PPZ after heat treatment. At the MgO/steel interface, MgO·Al2O3 (MA) spinel particles and dendritic Al2O3 were observed in the PPZ, and a thin MA spinel layer was detected on the bulk MgO side. After heating at 1373 K (1100 °C), the typical non-metallic inclusions (NMIs) in the low-density samples included AlN, MnS, AlN–MnS, and a small amount of Al2O3–MnS, whereas MnS-containing NMIs became spherical or near-spherical, and the number of fine AlN inclusions increased. In addition, the Mn diffusion from the steel matrix to the interface was revealed based on Fick’s second law, and the Mn contents detected through EPMA analysis after heat treatment were consistent with the theoretical calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. I. Gutierrez-Urrutia: ISIJ Int., 2021, vol. 61, pp. 16–25. https://doi.org/10.2355/isijinternational.ISIJINT-2020-467.

    Article  CAS  Google Scholar 

  2. S. Chen, R. Rana, A. Haldar, and R.K. Ray: Prog. Mater. Sci., 2017, vol. 89, pp. 345–91. https://doi.org/10.1016/j.pmatsci.2017.05.002.

    Article  CAS  Google Scholar 

  3. D.W. Suh and N.J. Kim: Scr. Mater., 2013, vol. 68, pp. 337–38. https://doi.org/10.1016/j.scriptamat.2012.11.037.

    Article  CAS  Google Scholar 

  4. H. Tervo, A. Kaijalainen, T. Pikkarainen, S. Mehtonen, and D. Porter: Mater. Sci. Eng. A, 2017, vol. 697, pp. 184–93. https://doi.org/10.1016/j.msea.2017.05.013.

    Article  CAS  Google Scholar 

  5. R. VazPenna, L.N. Bartlett, and T. Constance: Int. J. Metalcast., 2019, vol. 13, pp. 286–99. https://doi.org/10.1007/s40962-018-0273-9s.

    Article  CAS  Google Scholar 

  6. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–36. https://doi.org/10.2355/isijinternational.36.528.

    Article  CAS  Google Scholar 

  7. M. Nabeel, M. Alba, A. Karasev, P.G. Jönsson, and N. Dogan: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1674–85. https://doi.org/10.1007/s11663-019-01605-0.

    Article  CAS  Google Scholar 

  8. W. Wang, H. Zhu, Y. Han, J. Li, and Z. Xue: Steelmak, 2021, vol. 48, pp. 1038–47. https://doi.org/10.1080/03019233.2021.1909993.

    Article  CAS  Google Scholar 

  9. D.J. Kim and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43, pp. 875–86. https://doi.org/10.1007/s11663-012-9667-x.

    Article  CAS  Google Scholar 

  10. L. Wang, H. Zhu, J. Zhao, J. Li, and Z. Xue: Ceram. Int., 2022, vol. 48, pp. 1090–97. https://doi.org/10.1016/j.ceramint.2021.09.194.

    Article  CAS  Google Scholar 

  11. Y. Ren, L. Zhang, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2281–92. https://doi.org/10.1007/s11663-017-1007-8.

    Article  CAS  Google Scholar 

  12. W. Yang, S. Liu, S. Han, J. Wang, J. Guo, Y. Yan, and H. Guo: Materials, 2020, vol. 13, p. 5396. https://doi.org/10.3390/ma13235396.

    Article  CAS  Google Scholar 

  13. K.H. Kim, S.J. Kim, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2144–53. https://doi.org/10.2355/isijinternational.54.2144.

    Article  CAS  Google Scholar 

  14. K.H. Kim, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2678–86. https://doi.org/10.2355/isijinternational.54.2678.

    Article  CAS  Google Scholar 

  15. C. Liu, S. Yang, K.H. Kim, J. Li, H. Shibata, and S. Kitamura: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 811–19. https://doi.org/10.1007/s12613-015-1138-3.

    Article  CAS  Google Scholar 

  16. C. Liu, K.H. Kim, S.J. Kim, J. Li, S. Ueda, X. Gao, H. Shibata, and S.Y. Kitamura: Metall. Materi. Trans. B, 2015, vol. 46, pp. 1875–84. https://doi.org/10.1007/s11663-015-0356-4.

    Article  CAS  Google Scholar 

  17. X. Zhang, S. Yang, C. Liu, J. Li, Q. Liu, and G. Liu: J. Iron Steel Res. Int., 2018, vol. 25, pp. 1–8. https://doi.org/10.1007/s42243-017-0005-z.

    Article  Google Scholar 

  18. S.J. Kim, H. Tago, K.H. Kim, S. Kitamura, and H. Shibata: Metall. Mater. Trans. B, 2018, vol. 49, pp. 977–87. https://doi.org/10.1007/s11663-018-1233-8.

    Article  CAS  Google Scholar 

  19. W. Gan, C. Liu, K. Liao, H. Zhang, and H. Ni: Metall. Mater. Trans. B, 2022, vol. 53, pp. 485–502. https://doi.org/10.1007/s11663-021-02385-2.

    Article  CAS  Google Scholar 

  20. A. Paul and S. Divinski: Handbook of Solid State Diffusion: Volume 2. 1st. ed. Oxford: Butterworth-Heinemann; 2017. Chapter 6, Diffusion couple technique: a research tool in materials science, pp. 207−75.

  21. Y. Wang, L. Zhang, Y. Ren, H. Duan, and Q. Zhou: J. Mater. Res. Tech., 2022, vol. 18, pp. 159–70. https://doi.org/10.1016/j.jmrt.2022.02.084.

    Article  CAS  Google Scholar 

  22. Y. Wang, A. Karasev, J.H. Park, W. Mu, and P.G. Jönsson: Metall. Mater. Trans. B, 2021, vol. 52, pp. 2459–73.

    Article  CAS  Google Scholar 

  23. Y. Xia, J. Li, H. Dong, Y. Wan, and D. Fan: Ironmak. Steelmak., 2021, vol. 48, pp. 222–28. https://doi.org/10.1080/03019233.2020.1833676.

    Article  CAS  Google Scholar 

  24. X. Shao, X. Wang, M. Jiang, W. Wang, and F. Huang: ISIJ Int., 2011, vol. 51, pp. 1995–2001. https://doi.org/10.2355/isijinternational.51.1995.

    Article  CAS  Google Scholar 

  25. Y.V. Murty, T.Z. Kattamis, R. Mehrabian, and M.C. Flemings: Metall. Mater. Trans. A, 1977, vol. 8, pp. 1275–82. https://doi.org/10.1007/BF02643842.

    Article  Google Scholar 

  26. P. Lu, H. Li, H. Feng, Z. Jiang, H. Zhu, Z. Liu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52, pp. 2210–23. https://doi.org/10.1007/s11663-021-02171-0.

    Article  CAS  Google Scholar 

  27. F.L. Alcântara, R.A.N.M. Barbosa, and M.A. Cunha: ISIJ Int., 2013, vol. 53, pp. 1211–14. https://doi.org/10.2355/isijinternational.53.1211.

    Article  CAS  Google Scholar 

  28. G. Schimmel, J. Sorina-Müller, B. Kempf, and M. Rettenmayr: Acta Mater., 2010, vol. 58, pp. 2091–2102. https://doi.org/10.1016/j.actamat.2009.11.051.

    Article  CAS  Google Scholar 

  29. S. Guruswamy, S.M. Park, J.P. Hirth, and R.A. Rapp: Oxid. Met., 1986, vol. 26, pp. 77–100. https://doi.org/10.1007/BF00664274.

    Article  CAS  Google Scholar 

  30. Y. Shen, J. Liu, H. Xu, and H. Liu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2963–75. https://doi.org/10.1007/s11663-020-01982-x.

    Article  CAS  Google Scholar 

  31. P. Jimbert, T. Guraya, I. Kaltzakorta, T. Gutiérrez, R. Elvira, and L.T. Khajavi: J. Materi. Eng. Perform., 2022, vol. 31, pp. 2878–88. https://doi.org/10.1007/s11665-021-06418-4.

    Article  CAS  Google Scholar 

  32. Y. Tomota, N. Sekido, S. Harjo, T. Kawasaki, W. Gong, and A. Taniyama: ISIJ Int., 2017, vol. 57, pp. 2237–44. https://doi.org/10.2355/isijinternational.ISIJINT-2017-272.

    Article  CAS  Google Scholar 

  33. K.Y. Tsai, M.H. Tsai, and J.W. Yeh: Acta Mater., 2013, vol. 61, pp. 4887–97. https://doi.org/10.1016/j.actamat.2013.04.058.

    Article  CAS  Google Scholar 

  34. X. Yang, C. Shi, M. Zhang, G. Chai, and F. Wang: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1150–80. https://doi.org/10.1007/s11663-011-9547-9.

    Article  CAS  Google Scholar 

  35. Z. Luo: Acta Cryst. B, 2021, vol. 77, pp. 772–84. https://doi.org/10.1107/S2052520621008027.

    Article  CAS  Google Scholar 

  36. J. Toofan and P.R. Watson: Surf. Sci., 1998, vol. 401, pp. 162–72. https://doi.org/10.1016/S0039-6028(97)01031-5.

    Article  CAS  Google Scholar 

  37. L. Yang and G. Cheng: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 869–75. https://doi.org/10.1007/s12613-017-1472-8.

    Article  CAS  Google Scholar 

  38. Z. Deng, Z. Liu, M. Zhu, and L. Huo: ISIJ Int., 2021, vol. 61, pp. 1–5. https://doi.org/10.2355/isijinternational.ISIJINT-2020-352.

    Article  CAS  Google Scholar 

  39. H. Matsuno and Y. Kikuchi: Tetsu-to-Hagane, 2002, vol. 88, pp. 48–50. https://doi.org/10.2355/tetsutohagane1955.88.1_48.

    Article  CAS  Google Scholar 

  40. A.M.E. Raj, L.C. Nehru, M. Jayachandran, and C. Sanjeeviraja: Cryst. Res. Tech., 2007, vol. 42, pp. 867–75. https://doi.org/10.1002/crat.200710918.

    Article  CAS  Google Scholar 

  41. A.R. Oganov, M.J. Gillan, and G.D. Price: J. Chem. Phy., 2003, vol. 118, pp. 10174–82. https://doi.org/10.1063/1.1570394.

    Article  CAS  Google Scholar 

  42. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46. https://doi.org/10.2355/isijinternational.50.1333.

    Article  CAS  Google Scholar 

  43. V. Brabie: Mechanism of reaction between refractory materials and aluminum deoxidized molten steel. ISIJ Int., 1996, vol. 36, pp. S109-112. https://doi.org/10.2355/isijinternational.36.Suppl_S109.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 52074199).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangyu Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhu, H., Zhou, J. et al. Interaction Between Oxide Inclusions and Low-Density Steel During Heat Treatment. Metall Mater Trans B 53, 2991–3002 (2022). https://doi.org/10.1007/s11663-022-02580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02580-9

Navigation