Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Transcriptome profiling of the ventral pallidum reveals a role for pallido-thalamic neurons in cocaine reward

Abstract

Psychostimulant exposure alters the activity of ventral pallidum (VP) projection neurons. However, the molecular underpinnings of these circuit dysfunctions are unclear. We used RNA-sequencing to reveal alterations in the transcriptional landscape of the VP that are induced by cocaine self-administration in mice. We then probed gene expression in select VP neuronal subpopulations to isolate a circuit associated with cocaine intake. Finally, we used both overexpression and CRISPR-mediated knockdown to test the role of a gene target on cocaine-mediated behaviors as well as dendritic spine density. Our results showed that a large proportion (55%) of genes associated with structural plasticity were changed 24 h following cocaine intake. Among them, the transcription factor Nr4a1 (Nuclear receptor subfamily 4, group A, member 1, or Nur77) showed high expression levels. We found that the VP to mediodorsal thalamus (VP → MDT) projection neurons specifically were recapitulating this increase in Nr4a1 expression. Overexpressing Nr4a1 in VP → MDT neurons enhanced drug-seeking and drug-induced reinstatement, while Nr4a1 knockdown prevented self-administration acquisition and subsequent cocaine-mediated behaviors. Moreover, we showed that Nr4a1 negatively regulated spine dynamics in this specific cell subpopulation. Together, our study identifies for the first time the transcriptional mechanisms occurring in VP in drug exposure. Our study provides further understanding on the role of Nr4a1 in cocaine-related behaviors and identifies the crucial role of the VP → MDT circuit in drug intake and relapse-like behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cocaine intake alters structural plasticity-related molecules in the ventral pallidum.
Fig. 2: Cocaine intake increases Nr4a1 expression specifically in VP neurons projecting to the MDT.
Fig. 3: Transcriptional characterization of VP neurons projecting to the MDT in controls and following cocaine intake.
Fig. 4: Overexpression of Nr4a1 in VP to MDT neurons enhanced relapse-like behaviors and reduced dendritic spine density.
Fig. 5: Knockdown of Nr4a1 in VP to MDT neurons blocks FR1 acquisition and alters dendritic spine density.

Similar content being viewed by others

References

  1. Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol. 2015;130:29–70.

    PubMed  PubMed Central  Google Scholar 

  2. Heinsbroek JA, Bobadilla AC, Dereschewitz E, Assali A, Chalhoub RM, Cowan CW, et al. Opposing regulation of cocaine seeking by glutamate and GABA neurons in the ventral pallidum. Cell Rep. 2020;30:2018–27.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tooley J, Marconi L, Alipio JB, Matikainen-Ankney B, Georgiou P, Kravitz AV, et al. Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental circuitry and constrain reward seeking. Biol Psychiatry. 2018;83:1012–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, et al. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci. 2014;17:577–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ottenheimer DJ, Bari BA, Sutlief E, Fraser KM, Kim TH, Richard JM, et al. A quantitative reward prediction error signal in the ventral pallidum. Nat Neurosci. 2020;23:1267–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci. 2015;18:1230–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kupchik YM, Prasad AA. Ventral pallidum cellular and pathway specificity in drug seeking. Neurosci Biobehav Rev. 2021;131:373–86.

    CAS  PubMed  Google Scholar 

  8. Johnson PI, Napier TC. Contribution of the nucleus accumbens to cocaine-induced responses of ventral pallidal neurons. Synapse. 1996;22:253–60.

    CAS  PubMed  Google Scholar 

  9. Smith KS, Tindell AJ, Aldridge JW, Berridge KC. Ventral pallidum roles in reward and motivation. Behav Brain Res. 2009;196:155–67.

    PubMed  Google Scholar 

  10. Hubner CB, Koob GF. The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res. 1990;508:20–9.

    CAS  PubMed  Google Scholar 

  11. Faget L, Zell V, Souter E, McPherson A, Ressler R, Gutierrez-Reed N, et al. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat Commun. 2018;9:849.

    PubMed  PubMed Central  Google Scholar 

  12. Levi LA, Inbar K, Nachshon N, Bernat N, Gatterer A, Inbar D, et al. Projection-specific potentiation of ventral pallidal glutamatergic outputs after abstinence from cocaine. J Neurosci. 2020;40:1276–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell. 2017;170:284–97.e18.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Engeln M, Song Y, Chandra R, La A, Fox ME, Evans B, et al. Individual differences in stereotypy and neuron subtype translatome with TrkB deletion. Mol Psychiatry. 2021;26:1846–59.

    CAS  PubMed  Google Scholar 

  15. Engeln M, Fox ME, Lobo MK. Housing conditions during self-administration determine motivation for cocaine in mice following chronic social defeat stress. Psychopharmacology. 2021;238:41–54.

    CAS  PubMed  Google Scholar 

  16. Engeln M, Mitra S, Chandra R, Gyawali U, Fox ME, Dietz DM, et al. Sex-specific role for Egr3 in nucleus accumbens D2-Medium spiny neurons following long-term abstinence from cocaine self-administration. Biol Psychiatry. 2020;87:992–1000.

    CAS  PubMed  Google Scholar 

  17. Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, et al. Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron. 2017;96:1327–41.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mathis VP, Williams M, Fillinger C, Kenny PJ. Networks of habenula-projecting cortical neurons regulate cocaine seeking. Sci Adv. 2021;7:eabj2225.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wimmer ME, Fant B, Swinford-Jackson SE, Testino A, Van Nest D, Abel T, et al. H3.3 barcoding of nucleus accumbens transcriptional activity identifies novel molecular cascades associated with cocaine self-administration in mice. J Neurosci. 2019;39:5247–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gancarz AM, Wang ZJ, Schroeder GL, Damez-Werno D, Braunscheidel KM, Mueller LE, et al. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity. Nat Neurosci. 2015;18:959–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grimm JW, Hope BT, Wise RA, Shaham Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature. 2001;412:141–2.

  22. Peterson AB, Hivick DP, Lynch WJ. Dose-dependent effectiveness of wheel running to attenuate cocaine-seeking: impact of sex and estrous cycle in rats. Psychopharmacology. 2014;231:2661–70.

    CAS  PubMed  Google Scholar 

  23. Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS ONE. 2013;8:e76310.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fox ME, Figueiredo A, Menken MS, Lobo MK. Dendritic spine density is increased on nucleus accumbens D2 neurons after chronic social defeat. Sci Rep. 2020;10:12393.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xie H, Tang L, He X, Liu X, Zhou C, Liu J, et al. SaCas9 requires 5’-NNGRRT-3’ PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells. Biotechnol J. 2018;13:e1800080.

    PubMed  Google Scholar 

  27. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.

    PubMed  PubMed Central  Google Scholar 

  28. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Orvis J, Gottfried B, Kancherla J, Adkins RS, Song Y, Dror AA, et al. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nat Methods. 2021;18:843–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Maere S, Heymans K, Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–9.

    CAS  PubMed  Google Scholar 

  32. Janky R, Verfaillie A, Imrichova H, Van de Sande B, Standaert L, Christiaens V, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol. 2014;10:e1003731.

    PubMed  PubMed Central  Google Scholar 

  33. Chandra R, Engeln M, Francis TC, Konkalmatt P, Patel D, Lobo MK. A role for peroxisome proliferator-activated receptor gamma coactivator-1alpha in nucleus accumbens neuron subtypes in cocaine action. Biol Psychiatry. 2017;81:564–72.

    CAS  PubMed  Google Scholar 

  34. Fox ME, Chandra R, Menken MS, Larkin EJ, Nam H, Engeln M, et al. Dendritic remodeling of D1 neurons by RhoA/Rho-kinase mediates depression-like behavior. Mol Psychiatry. 2020;25:1022–34.

    CAS  PubMed  Google Scholar 

  35. Francis TC, Chandra R, Gaynor A, Konkalmatt P, Metzbower SR, Evans B, et al. Molecular basis of dendritic atrophy and activity in stress susceptibility. Mol Psychiatry. 2017;22:1512–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    CAS  PubMed  Google Scholar 

  37. Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates. 3rd edn. Elsevier; 2008.

  38. Rodriguez A, Ehlenberger DB, Dickstein DL, Hof PR, Wearne SL. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS ONE. 2008;3:e1997.

    PubMed  PubMed Central  Google Scholar 

  39. Campos-Melo D, Galleguillos D, Sanchez N, Gysling K, Andres ME. Nur transcription factors in stress and addiction. Front Mol Neurosci. 2013;6:44.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Carpenter MD, Hu Q, Bond AM, Lombroso SI, Czarnecki KS, Lim CJ, et al. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat Commun. 2020;11:504.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Wang Y, Erturk A, Kallop D, Jiang Z, Weimer RM, et al. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron. 2014;83:431–43.

    CAS  PubMed  Google Scholar 

  42. Pietersz KL, Martier RM, Baatje MS, Liefhebber JM, Brouwers CC, Pouw SM, et al. Transduction patterns in the CNS following various routes of AAV-5-mediated gene delivery. Gene Ther. 2021;28:435–46.

    CAS  PubMed  Google Scholar 

  43. Martin JA, Werner CT, Mitra S, Zhong P, Wang ZJ, Gobira PH, et al. A novel role for the actin-binding protein drebrin in regulating opiate addiction. Nat Commun. 2019;10:4140.

    PubMed  PubMed Central  Google Scholar 

  44. Lee KJ, Hoe HS, Pak DT. Plk2 Raps up Ras to subdue synapses. Small GTPases. 2011;2:162–6.

    PubMed  PubMed Central  Google Scholar 

  45. Ranta S, Zhang Y, Ross B, Takkunen E, Hirvasniemi A, de la Chapelle A, et al. Positional cloning and characterisation of the human DLGAP2 gene and its exclusion in progressive epilepsy with mental retardation. Eur J Hum Genet. 2000;8:381–4.

    CAS  PubMed  Google Scholar 

  46. Shu FJ, Ramineni S, Hepler JR. RGS14 is a multifunctional scaffold that integrates G protein and Ras/Raf MAPkinase signalling pathways. Cell Signal. 2010;22:366–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryu J, Futai K, Feliu M, Weinberg R, Sheng M. Constitutively active Rap2 transgenic mice display fewer dendritic spines, reduced extracellular signal-regulated kinase signaling, enhanced long-term depression, and impaired spatial learning and fear extinction. J Neurosci. 2008;28:8178–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Root DH, Fabbricatore AT, Pawlak AP, Barker DJ, Ma S, West MO. Slow phasic and tonic activity of ventral pallidal neurons during cocaine self-administration. Synapse. 2012;66:106–27.

    CAS  PubMed  Google Scholar 

  49. Cahill ME, Bagot RC, Gancarz AM, Walker DM, Sun H, Wang ZJ, et al. Bidirectional synaptic structural plasticity after chronic cocaine administration occurs through Rap1 small GTPase signaling. Neuron. 2016;89:566–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Franco D, Wulff AB, Lobo MK, Fox ME. Chronic physical and vicarious psychosocial stress alter fentanyl consumption and nucleus accumbens Rho GTPases in male and female C57BL/6 mice. Front Behav Neurosci. 2022;16:821080.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahler SV, Aston-Jones GS. Fos activation of selective afferents to ventral tegmental area during cue-induced reinstatement of cocaine seeking in rats. J Neurosci. 2012;32:13309–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Leung BK, Balleine BW. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer. J Neurosci. 2015;35:4953–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature. 1997;386:827–30.

    CAS  PubMed  Google Scholar 

  54. Weissenborn R, Whitelaw RB, Robbins TW, Everitt BJ. Excitotoxic lesions of the mediodorsal thalamic nucleus attenuate intravenous cocaine self-administration. Psychopharmacology. 1998;140:225–32.

    CAS  PubMed  Google Scholar 

  55. Young WS 3rd, Alheid GF, Heimer L. The ventral pallidal projection to the mediodorsal thalamus: a study with fluorescent retrograde tracers and immunohistofluorescence. J Neurosci. 1984;4:1626–38.

    PubMed  PubMed Central  Google Scholar 

  56. Perlini LE, Botti F, Fornasiero EF, Giannandrea M, Bonanomi D, Amendola M, et al. Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci. 2011;124:3643–53.

    CAS  PubMed  Google Scholar 

  57. Macpherson T, Mizoguchi H, Yamanaka A, Hikida T. Preproenkephalin-expressing ventral pallidal neurons control inhibitory avoidance learning. Neurochem Int. 2019;126:11–8.

    CAS  PubMed  Google Scholar 

  58. Eagle AL, Manning CE, Williams ES, Bastle RM, Gajewski PA, Garrison A, et al. Circuit-specific hippocampal DeltaFosB underlies resilience to stress-induced social avoidance. Nat Commun. 2020;11:4484.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zipperly ME, Sultan FA, Graham GE, Brane AC, Simpkins NA, Carullo NVN, et al. Regulation of dopamine-dependent transcription and cocaine action by Gadd45b. Neuropsychopharmacology. 2021;46:709–20.

    CAS  PubMed  Google Scholar 

  60. Parnaudeau S, O’Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron. 2013;77:1151–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tachibana Y, Hikosaka O. The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron. 2012;76:826–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hawk JD, Bookout AL, Poplawski SG, Bridi M, Rao AJ, Sulewski ME, et al. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J Clin Investig. 2012;122:3593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Corbit LH, Muir JL, Balleine BW. Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats. Eur J Neurosci. 2003;18:1286–94.

    PubMed  Google Scholar 

  64. Canchy L, Girardeau P, Durand A, Vouillac-Mendoza C, Ahmed SH. Pharmacokinetics trumps pharmacodynamics during cocaine choice: a reconciliation with the dopamine hypothesis of addiction. Neuropsychopharmacology. 2021;46:288–96.

    CAS  PubMed  Google Scholar 

  65. Porrino LJ, Lyons D, Miller MD, Smith HR, Friedman DP, Daunais JB, et al. Metabolic mapping of the effects of cocaine during the initial phases of self-administration in the nonhuman primate. J Neurosci. 2002;22:7687–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Savell KE, Bach SV, Zipperly ME, Revanna JS, Goska NA, Tuscher JJ, et al. A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation. eNeuro. 2019;6.

  67. Carullo NVN, Hinds JE, Revanna JS, Tuscher JJ, Bauman AJ, Day JJ. A Cre-dependent CRISPR/dCas9 system for gene expression regulation in neurons. eNeuro. 2021;8.

  68. Jeanneteau F, Barrere C, Vos M, De Vries CJM, Rouillard C, Levesque D, et al. The stress-induced transcription factor NR4A1 adjusts mitochondrial function and synapse number in prefrontal cortex. J Neurosci. 2018;38:1335–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pak DT, Sheng M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science. 2003;302:1368–73.

    CAS  PubMed  Google Scholar 

  70. Bridi MS, Abel T. The NR4A orphan nuclear receptors mediate transcription-dependent hippocampal synaptic plasticity. Neurobiol Learn Mem. 2013;105:151–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Inbar K, Levi LA, Kupchik YM. Cocaine induces input and cell-type-specific synaptic plasticity in ventral pallidum-projecting nucleus accumbens medium spiny neurons. Neuropsychopharmacology. 2022;47:1461–72.

  72. Barrientos C, Knowland D, Wu MMJ, Lilascharoen V, Huang KW, Malenka RC, et al. Cocaine-induced structural plasticity in input regions to distinct cell types in nucleus accumbens. Biol Psychiatry. 2018;84:893–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. DePoy LM, Gourley SL. Synaptic cytoskeletal plasticity in the prefrontal cortex following psychostimulant exposure. Traffic. 2015;16:919–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA. 2006;103:3399–404.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH grants R01MH106500, R01DA038613, R01DA047843 and Israel-US Binational Science Foundation 201725 (to MKL), K99DA050575 (to MEF), F31DA052967 (to EC), T32DK098107 and F32DA052966 (to CAC). Data sharing and visualization via gEAR was supported by grants R24MH114815 and R01DC019370. SST and RJH were supported by the University of Maryland Scholars Program, an initiative of the University of Maryland: MPowering the State. The authors would like to thank Yang Song, Ronna Hertzano and the members of the UMSOM Institute for Genome Science (IGS) as well as Katherine Duarte for their technical help. We also thank Dr. Kristen Maynard and Dr. Keri Martinowich for their help with RNAscope protocols.

Funding

This work was funded by NIH grants R01MH106500, R01DA038613, R01DA047843 and Israel-US Binational Science Foundation 201725 (to MKL), K99DA050575 (to MEF), F31DA052967 (to EC), T32DK098107, and F32DA052966 (to CAC).

Author information

Authors and Affiliations

Authors

Contributions

ME and MKL designed the experiments. ME, MEF, HQ, SST, and RJH conducted behavioral experiments, MDT and VMR provided animal support. ME and HQ performed RAP2 assay. ME, EYC, RJH and VMR extracted RNA and/or performed qRT-PCR experiments. HN and ME performed in situ hybridization. MEF conducted cell-type specific RNA extraction. SST and ME performed in situ hybridization quantification. RC, EYC and CAC designed viral constructs. ME performed bioinformatic analyses. ME and MEF conducted neuronal morphology experiments. ME and MKL wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Michel Engeln or Mary Kay Lobo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engeln, M., Fox, M.E., Chandra, R. et al. Transcriptome profiling of the ventral pallidum reveals a role for pallido-thalamic neurons in cocaine reward. Mol Psychiatry 27, 3980–3991 (2022). https://doi.org/10.1038/s41380-022-01668-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01668-7

This article is cited by

Search

Quick links