Skip to main content
Log in

Selective Recovery of Valuable Metals (Se, Te, Cu) from the Selenium Distillation Residue by Sulfuric Acid Oxidative Leaching

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Selenium distillation residue (SDR), inevitably generated in the treatment of refining selenium by vacuum distillation of crude selenium, is a kind of solid residue with low utilization yet massive recycling value. It contains a diverse and complicated component of selenide, telluride, and high-level precious metals. In this study, oxidative acid leaching at atmospheric pressure is adopted to systematically treat SDR to separate selenium, tellurium, copper, and effectively enrich gold and silver. The leaching method in H2SO4–H2O2 mixed solution under an oxygen atmosphere was employed to investigate the effects of H2SO4 concentration, H2O2 concentration, oxygen flow rate, liquid–solid ratio, and leaching time on the recovery of Se, Te, and Cu. Under the optimal conditions, the recoveries of Se, Te, and Cu, respectively, achieved 87.96%, 87.02%, and 98.82% while Au, Ag, and Pb were enriched in the leaching residue, the contents were 0.42%, 16.5%, and 24.27%, respectively. Thermodynamic analysis indicated that insoluble Cu2Se could be oxidized to soluble H2SeO3 in the pH range of − 1.5 to 0, and the potential 0.83 V. XRD and EPMA results outline that CuSe, AgSe, CuTe, and AgTe exist in leaching residue resulting in incomplete leaching of Se, Te, and Cu. Besides, the existence of core–shell grain of AgCl@AgSe is another main reason for the incomplete leaching of selenium. Oxygen partial pressure can enhance mass transfer by diffusion and open the envelope phase. The leaching percentages of Se, Te, and Cu at 0.5 MPa are measured as 93.97%, 99.83%, and 97.42%, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lina J, Valentina K, Nijolė D et al (2021) Ag–In–Se films on flexible architectural textiles as efficient material for optoelectronics applications: a preliminary study. Thin Solid Films 721:138566. https://doi.org/10.1016/j.tsf.2021.138566

    Article  CAS  Google Scholar 

  2. Mishra PK, Babu PD, Ravikumar G et al (2015) Possible room temperature ferromagnetism in silicon doped tellurium semiconductor. J Alloys Compd 639:5–8. https://doi.org/10.1016/j.jallcom.2015.03.084

    Article  CAS  Google Scholar 

  3. Hadar I, Song TB, Ke W et al (2019) Modern processing and insights on selenium solar cells: the world’s first photovoltaic device. Adv Energy Mater 9(16):1802766. https://doi.org/10.1002/aenm.201802766

    Article  CAS  Google Scholar 

  4. Kang HK, Park SH, Jun DH et al (2011) Te doping in the GaAs tunnel junction for GaInP/GaAs tandem solar cells. Semicond Sci Technol 26135(7):75009–75005. https://doi.org/10.1088/0268-1242/26/7/075009

    Article  CAS  Google Scholar 

  5. Zhang L, Xu Z (2018) A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes. J Clean Prod 202(20):1001–1025. https://doi.org/10.1016/j.jclepro.2018.08.073

    Article  Google Scholar 

  6. Spinks SC, Parnell J, Bellis D, Still J (2016) Remobilization and mineralization of selenium–tellurium in metamorphosed red beds: evidence from the Munster Basin, Ireland. Ore Geol Rev 72:114–127. https://doi.org/10.1016/j.oregeorev.2015.07.007

    Article  Google Scholar 

  7. Moss RL, Tzimas E, Kara H, et al (2011) Critical metals in strategic energy technologies. assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies. Publications Office of the European Union. https://doi.org/10.2790/35600

  8. Shi GC, Liao YL, Su BW et al (2020) Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid. Sep Purif Technol 241:10. https://doi.org/10.1016/j.seppur.2020.116699

    Article  CAS  Google Scholar 

  9. Makuei FM, Senanayake G (2018) Extraction of tellurium from lead and copper bearing feed materials and interim metallurgical products—a short review. Miner Eng 115:79–87. https://doi.org/10.1016/j.mineng.2017.10.013

    Article  CAS  Google Scholar 

  10. Ding Y, Zhang S, Liu B et al (2017) Integrated process for recycling copper anode slime from electronic waste smelting. Clean Prod 165(1):48–56. https://doi.org/10.1016/j.jclepro.2017.07.094

    Article  CAS  Google Scholar 

  11. Khanlarian M, Rashchi F, Saba M (2019) A modified sulfation-roasting-leaching process for recovering Se, Cu, and Ag from copper anode slimes at a lower temperature. J Environ Manage 235:303–309. https://doi.org/10.1016/j.jenvman.2019.01.079

  12. Lu DK, Chang YF, Yang HY et al (2015) Sequential removal of selenium and tellurium from copper anode slime with high nickel content. Trans Nonferr Metals Soc China 25(4):1307–1314. https://doi.org/10.1016/S1003-6326(15)63729-3

    Article  CAS  Google Scholar 

  13. Li D, Guo XY, Xu ZP et al (2015) Leaching behavior of metals from copper anode slime using an alkali fusion-leaching process. Hydrometallurgy 157:9–12. https://doi.org/10.1016/j.hydromet.2015.07.008

    Article  CAS  Google Scholar 

  14. Hyvärinen O, Lindroos L, Yllö E (1989) Recovering selenium from copper refinery slimes. JOM 41(7):42–43. https://doi.org/10.1007/BF03220271

    Article  Google Scholar 

  15. Li D, Guo X, Xu Z et al (2016) Metal values separation from residue generated in alkali fusion-leaching of copper anode slime. Hydrometallurgy 165:290–294. https://doi.org/10.1016/j.hydromet.2016.01.021

    Article  CAS  Google Scholar 

  16. Lee JC, Kurniawan K, Chung KW et al (2021) Metallurgical process for total recovery of all constituent metals from copper anode slimes: a review of established technologies and current progress. Met Mater Int 27(2):2160–2187. https://doi.org/10.1007/s12540-020-00716-7

    Article  CAS  Google Scholar 

  17. Zhang Y, Hua Y, Gao X et al (2016) Recovery of zinc from a low-grade zinc oxide ore with high silicon by sulfuric acid curing and water leaching. Hydrometallurgy 166:16–21. https://doi.org/10.1016/j.hydromet.2016.08.010

    Article  CAS  Google Scholar 

  18. Liu GQ, Wu YF, Tang AJ et al (2020) Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: a review. Hydrometallurgy 197(8):105460. https://doi.org/10.1016/j.hydromet.2020.105460

    Article  CAS  Google Scholar 

  19. Chen A, Peng Z, Hwang JY et al (2015) Recovery of silver and gold from copper anode slimes. JOM 67(2):493–502. https://doi.org/10.1007/s11837-014-1114-9

    Article  CAS  Google Scholar 

  20. Han JW, Liang C, Liu W et al (2017) Pretreatment of tin anode slime using alkaline pressure oxidative leaching. Sep Purif Technol 174:389–395. https://doi.org/10.1016/j.seppur.2016.10.056

    Article  CAS  Google Scholar 

  21. Liu WF, Yang TZ, Zhang DC et al (2014) Pretreatment of copper anode slime with alkaline pressure oxidative leaching. Int J Miner Process 128:48–54. https://doi.org/10.1016/j.minpro.2014.03.002

    Article  CAS  Google Scholar 

  22. Kilic Y, Kartal G, Timur S (2013) An investigation of copper and selenium recovery from copper anode slimes. Int J Miner Process 124:75–82. https://doi.org/10.1016/j.minpro.2013.04.006

    Article  CAS  Google Scholar 

  23. Hait J, Jana RK, Sanyal SK (2004) Mineralogical characteristics of copper electrorefining anode slime and its leached residues. Ind Eng Chem Res 43(9):2079–2087. https://doi.org/10.1021/ie0305465

    Article  CAS  Google Scholar 

  24. Abdollahy M, Shafaei SZ (2004) Optimized leaching conditions for selenium from Sar-Cheshmeh copper anode slimes. Iran J Chem Chem Eng Int English Ed 23(2):101–108. https://doi.org/10.1016/j.ijpvp.2004.04.005

    Article  Google Scholar 

  25. Seisko S, Aromaa J, Latostenmaa P, et al (2016) Effect of process variables on oxidative pressurized acid leaching of copper electrorefining anode slimes. E3s Web of Conferences. https://doi.org/10.1051/e3sconf/20160801006

  26. Hait J, Jana RK, Kumar V et al (2002) Some studies on sulfuric acid leaching of anode slime with additives. Ind Eng Chem Res 41(25):6593–6599. https://doi.org/10.1021/ie020239j

    Article  CAS  Google Scholar 

  27. Li XJ, Yang HY, Jin ZN et al (2017) Selenium leaching from copper anode slimes using a nitric acid-sulfuric acid mixture. Metallurgist 61:348–356. https://doi.org/10.1007/s11015-017-0500-2

    Article  CAS  Google Scholar 

  28. Rao S, Liu Y, Wang D et al (2021) Pressure leaching of selenium and tellurium from scrap copper anode slimes in sulfuric acid-oxygen media. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123989

    Article  Google Scholar 

  29. Li XJ, Yang HY, Jin ZN et al (2017) Extraction of selenium from copper anode slimes in a sealed leaching system. Russ J Non-Ferr Metals 58(4):357–364. https://doi.org/10.3103/S1067821217040174

    Article  Google Scholar 

  30. Hait J, Jana RK, Sanyal SK (2009) Processing of copper electrorefining anode slime: a review. Miner Process Extract Metall 118(4):240–252. https://doi.org/10.1179/174328509X431463

    Article  CAS  Google Scholar 

  31. Xiao L, Wang YL, Yu Y et al (2019) Enhanced selective recovery of selenium from anode slime using MnO2 in dilute H2SO4 solution as oxidant. J Clean Prod 209:494–504. https://doi.org/10.1016/j.jclepro.2018.10.144

    Article  CAS  Google Scholar 

  32. Dong ZL, Jiang T, Xu B et al (2020) Comprehensive recoveries of selenium, copper, gold, silver and lead from a copper anode slime with a clean and economical hydrometallurgical process. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124762

    Article  Google Scholar 

  33. Cao L, Liao YL, Shi GC et al (2019) Leaching behavior of zinc and copper from zinc refinery residue and filtration performance of pulp under the hydrothermal process. Int J Miner Metall Mater 26(1):21–32. https://doi.org/10.1007/s12613-019-1706-z

    Article  CAS  Google Scholar 

  34. Gharabaghi M, Irannajad M, Azadmehr AR (2013) Leaching kinetics of nickel extraction from hazardous waste by sulphuric acid and optimization dissolution conditions. Chem Eng Res Des 91(2):325–331. https://doi.org/10.1016/j.cherd.2012.11.016

    Article  CAS  Google Scholar 

  35. Yang HY, Li XJ, Tong LL et al (2018) Leaching kinetics of selenium from copper anode slimes by nitric acid-sulfuric acid mixture. Chinese J Nonferr Metals 28(1):186–192. https://doi.org/10.1016/S1003-6326(18)64652-7

    Article  CAS  Google Scholar 

  36. Yin CS, Ji L, Chen XY et al (2020) Efficient leaching of scheelite in sulfuric acid and hydrogen peroxide solution. Hydrometallurgy 192:11. https://doi.org/10.1016/j.hydromet.2020.105292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (U1902221), the Basic Research Plan of Yunnan Province (2019FA020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoQiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Zhi Sun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, T., Luo, H., Liu, L. et al. Selective Recovery of Valuable Metals (Se, Te, Cu) from the Selenium Distillation Residue by Sulfuric Acid Oxidative Leaching. J. Sustain. Metall. 8, 1191–1203 (2022). https://doi.org/10.1007/s40831-022-00547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00547-3

Keywords

Navigation