Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The dynamic roles of the bladder tumour microenvironment

Abstract

Bladder cancer is a prevalent but currently understudied cancer type and patient outcomes are poor when it progresses to the muscle-invasive stage. Current research in bladder cancer focuses on the genetic and epigenetic alterations occurring within the urothelial cell compartment; however, the stromal compartment receives less attention. Dynamic changes and intercellular communications occur in the tumour microenvironment (TME) of the bladder — a new concept and niche that we designate as the bladder TME (bTME) — during tumour evolution, metastatic progression and in the context of therapeutic response. Collagens and their cognate receptors, the discoidin domain receptors, have a role in various steps of the metastatic cascade and in immune checkpoint resistance. Furthermore, the presence of another TME niche, the metastatic TME (met-TME), is a novel concept that could support divergent progression of metastatic colonization in different organs, resulting in distant metastases with distinct characteristics and genetics from the primary tumour. The stroma has divergent roles in mediating therapeutic response to BCG immunotherapy and immune checkpoint inhibitors, as well as conventional chemotherapy or trimodality therapy (that is, maximal transurethral resection of bladder tumour, chemotherapy and radiotherapy). The local bTME and distant met-TME are currently conceptually and therapeutically unexploited niches that should be actively investigated. New biological insights from these TMEs will enable rational design of strategies that co-target the tumour and stroma, which are expected to improve the outcomes of patients with advanced bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bladder TME components and their interactions with urothelial cells during bladder tumour progression.
Fig. 2: Collagen as the major extracellular matrix in bladder tumour microenvironment.
Fig. 3: The bTME and the met-TMEs in various organs.

Similar content being viewed by others

References

  1. Antoni, S. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017).

    Article  PubMed  Google Scholar 

  2. Boormans, J. L. & Zwarthoff, E. C. Limited funds for bladder cancer research and what can we do about it. Bladder Cancer 2, 49–51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Galsky, M. D. et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 395, 1547–1557 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Powles, T. et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet Oncol. 22, 931–945 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Ho, P. L., Kurtova, A. & Chan, K. S. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat. Rev. Urol. 9, 583–594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gabella, G. Lamina propria: the connective tissue of rat urinary bladder mucosa. Neurourol. Urodyn. 38, 2093–2103 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Gevaert, T. et al. Identification of different phenotypes of interstitial cells in the upper and deep lamina propria of the human bladder dome. J. Urol. 192, 1555–1563 (2014).

    Article  PubMed  Google Scholar 

  12. Neuhaus, J. et al. 3D-electron microscopic characterization of interstitial cells in the human bladder upper lamina propria. Neurourol. Urodyn. 37, 89–98 (2018).

    Article  PubMed  Google Scholar 

  13. Kuijpers, K. A. J., Heesakkers, J. P. F. A., Jansen, C. F. J. & Schalken, J. A. Cadherin-11 is expressed in detrusor smooth muscle cells and myofibroblasts of normal human bladder. Eur. Urol. 52, 1213–1221 (2007).

    Article  PubMed  Google Scholar 

  14. McCloskey, K. D. Interstitial cells in the urinary bladder — localization and function. Neurourol. Urodyn. 9, 82–87 (2010).

    Article  Google Scholar 

  15. Baskin, L. S. et al. Cellular signaling in the bladder. Front. Biosci. 2, d592–d595 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin, K. et al. Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26, 521–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flier, J. S., Underhill, L. H. & Dvorak, H. F. Tumors: wounds that do not heal. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  Google Scholar 

  19. Liebert, M., Washington, R., Wedemeyer, G., Carey, T. E. & Grossman, H. B. Loss of co-localization of alpha 6 beta 4 integrin and collagen VII in bladder cancer. Am. J. Pathol. 144, 787–795 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  21. Lee, Y.-C. et al. Collagen-rich airway smooth muscle cells are a metastatic niche for tumor colonization in the lung. Nat. Commun. 10, 2131 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sleeman, J. P. The metastatic niche and stromal progression. Cancer Metastasis Rev. 31, 429–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji, Q. et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat. Commun. 11, 1211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Duda, D. G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl Med. 10, eaan3464 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Chan, K. S. Molecular pathways: targeting cancer stem cells awakened by chemotherapy to abrogate tumor repopulation. Clin. Cancer Res. 22, 802–806 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Panigrahy, D. et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J. Clin. Invest. 129, 2964–2979 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tuxhorn, J. A. et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).

    CAS  PubMed  Google Scholar 

  35. Toullec, A. et al. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol. Med. 2, 211–230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nielsen, S. R. et al. Corrigendum: macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 822 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Albrengues, J. et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun. 6, 10204 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Kojima, Y. et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl Acad. Sci. USA 107, 20009–20014 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arina, A. et al. Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc. Natl Acad. Sci. USA 113, 7551–7556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jung, Y. et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat. Commun. 4, 1795 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McDonald, L. T. et al. Hematopoietic stem cell-derived cancer-associated fibroblasts are novel contributors to the pro-tumorigenic microenvironment. Neoplasia 17, 434–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nimphius, W., Moll, R., Olbert, P., Ramaswamy, A. & Barth, P. J. CD34+ fibrocytes in chronic cystitis and noninvasive and invasive urothelial carcinomas of the urinary bladder. Virchows Arch. 450, 179–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Bellini, A. & Mattoli, S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab. Invest. 87, 858–870 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Reilkoff, R. A., Bucala, R. & Herzog, E. L. Fibrocytes: emerging effector cells in chronic inflammation. Nat. Rev. Immunol. 11, 427–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zeisberg, M. et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem. 282, 23337–23347 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123–10128 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Brunner, A. et al. Prognostic significance of tenascin-C expression in superficial and invasive bladder cancer. J. Clin. Pathol. 57, 927–931 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Shiga, K. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers 7, 2443–2458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mezheyeuski, A. et al. Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Sci. Rep. 10, 281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Helms, E., Onate, M. K. & Sherman, M. H. Fibroblast heterogeneity in the pancreatic tumor microenvironment. Cancer Discov. 10, 648–656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, Z. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun. 11, 5077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hung, T.-T., Wang, H., Kingsley, E. A., Risbridger, G. P. & Russell, P. J. Molecular profiling of bladder cancer: involvement of the TGF-beta pathway in bladder cancer progression. Cancer Lett. 265, 27–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Liang, Y. et al. Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci. Rep. 6, 29479 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, P. et al. Bladder cancer cell invasion is enhanced by cross-talk with fibroblasts through hepatocyte growth factor. Urology 69, 780–784 (2007).

    Article  PubMed  Google Scholar 

  60. Szarvas, T., Vom Dorp, F., Ergün, S. & Rübben, H. Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat. Rev. Urol. 8, 241–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calvete, J. et al. The coexpression of fibroblast activation protein (FAP) and basal-type markers (CK 5/6 and CD44) predicts prognosis in high-grade invasive urothelial carcinoma of the bladder. Hum. Pathol. 91, 61–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Park, J. E. et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 274, 36505–36512 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Hotary, K. B. et al. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114, 33–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Feinberg, T. Y. et al. Divergent matrix-remodeling strategies distinguish developmental from neoplastic mammary epithelial cell invasion programs. Dev. Cell 47, 145–160.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hashitani, H., Mitsui, R., Shimizu, Y., Higashi, R. & Nakamura, K. Functional and morphological properties of pericytes in suburothelial venules of the mouse bladder. Br. J. Pharmacol. 167, 1723–1736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hashitani, H., Mitsui, R., Miwa-Nishimura, K. & Lam, M. Role of capillary pericytes in the integration of spontaneous Ca2+ transients in the suburothelial microvasculature in situ of the mouse bladder. J. Physiol. 596, 3531–3552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miodoński, A. J. & Litwin, J. A. Microvascular architecture of the human urinary bladder wall: a corrosion casting study. Anat. Rec. 254, 375–381 (1999).

    Article  PubMed  Google Scholar 

  69. Sherwood, L. M., Parris, E. E. & Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  Google Scholar 

  70. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Patel, N. S. et al. Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin. Cancer Res. 12, 4836–4844 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. McDonald, D. M. & Baluk, P. Significance of blood vessel leakiness in cancer. Cancer Res. 62, 5381–5385 (2002).

    CAS  PubMed  Google Scholar 

  74. John, A. et al. Urothelial carcinoma of the bladder induces endothelial cell activation and hypercoagulation. Mol. Cancer Res. 18, 1099–1109 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Trédan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    Article  PubMed  CAS  Google Scholar 

  76. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ingersoll, M. A. & Albert, M. L. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol. 6, 1041–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Abraham, S. N. & Miao, Y. The nature of immune responses to urinary tract infections. Nat. Rev. Immunol. 15, 655–663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gardiner, R. A. et al. Immunohistochemical analysis of the human bladder. Br. J. Urol. 58, 19–25 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Hart, D. N. J. & Fabre, J. W. Demonstration and characterization of ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J. Exp. Med. 154, 347–361 (1981).

    Article  CAS  PubMed  Google Scholar 

  81. Schilling, J. D., Martin, S. M., Hung, C. S., Lorenz, R. G. & Hultgren, S. J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 100, 4203–4208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Engel, D. R. et al. CCR2 mediates homeostatic and inflammatory release of Gr1 high monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J. Immunol. 181, 5579–5586 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Mariano, L. L. et al. Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder. Sci. Adv. 6, eabc5739 (2020).

    Article  CAS  Google Scholar 

  84. Christmas, T. J. Lymphocyte sub-populations in the bladder wall in normal bladder, bacterial cystitis and interstitial cystitis. Br. J. Urol. 73, 508–515 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Lobo, N. et al. 100 years of Bacillus Calmette–Guérin immunotherapy: from cattle to COVID-19. Nat. Rev. Urol. 18, 611–622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schneider, A. K., Chevalier, M. F. & Derré, L. The multifaceted immune regulation of bladder cancer. Nat. Rev. Urol. 16, 613–630 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Mo, Q. et al. Prognostic power of a tumor differentiation gene signature for bladder urothelial carcinomas. J. Natl Cancer Inst. 110, 448–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article  PubMed  Google Scholar 

  90. Pfannstiel, C. et al. The tumor immune microenvironment drives a prognostic relevance that correlates with bladder cancer subtypes. Cancer Immunol. Res. 7, 923–938 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Luo, Y., Zeng, G. & Wu, S. Identification of microenvironment-related prognostic genes in bladder cancer based on gene expression profile. Front. Genet. 10, 1187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Daher, N., Abourachid, H., Bove, N., Petit, J. & Burtin, P. Collagen IV staining pattern in bladder carcinomas: relationship to prognosis. Br. J. Cancer 55, 665–671 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sathyanarayana, U. G. et al. Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes. Cancer Res. 64, 1425–1430 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. 11, M111.014647 (2012).

    Article  CAS  Google Scholar 

  95. Hynes, R. O. & Naba, A. Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Said, N., Frierson, H. F., Sanchez-Carbayo, M., Brekken, R. A. & Theodorescu, D. Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J. Clin. Invest. 123, 751–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamauchi, M. & Sricholpech, M. Lysine post-translational modifications of collagen. Essays Biochem. 52, 113–133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Y. et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J. Clin. Invest. 125, 1147–1162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yamauchi, M., Barker, T. H., Gibbons, D. L. & Kurie, J. M. The fibrotic tumor stroma. J. Clin. Invest. 128, 16–25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brooks, M. et al. Positive association of collagen type I with non-muscle invasive bladder cancer progression. Oncotarget 7, 82609–82619 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Reiser, K. M., Amigable, M. & Last, J. A. Nonenzymatic glycation of type I collagen. J. Biol. Chem. 267, 24207–24216 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. American Cancer Society. Key statistics for bladder cancer. cancer.org https://www.cancer.org/cancer/bladder-cancer/about/key-statistics.html (2022).

  105. Knight, C. G. et al. The collagen-binding a-domains of integrins α1/β1 and α2/β1 recognize the same specific amino acid sequence, GFOGER, in native (triple- helical) collagens. J. Biol. Chem. 275, 35–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Ichikawa, O. et al. Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J. 26, 4168–4176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, H. et al. Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol. 30, 16–26 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Aitken, K. J. & Bägli, D. J. The bladder extracellular matrix. Part I: architecture, development and disease. Nat. Rev. Urol. 6, 596–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Wilson, C. B., Leopard, J., Cheresh, D. A. & Nakamura, R. M. Extracellular matrix and integrin composition of the normal bladder wall. World J. Urol. 14 (Suppl. 1), S30–S37 (1996).

    PubMed  Google Scholar 

  111. Ioachim, E. et al. A clinicopathological study of the expression of extracellular matrix components in urothelial carcinoma. BJU Int. 95, 655–659 (2005).

    Article  PubMed  Google Scholar 

  112. Eisinger, F., Patzelt, J. & Langer, H. F. The platelet response to tissue injury. Front. Med. 5, 317 (2018).

    Article  Google Scholar 

  113. Rousselle, P., Montmasson, M. & Garnier, C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 75–76, 12–26 (2019).

    Article  PubMed  CAS  Google Scholar 

  114. Rohani, M. G. et al. MMP-10 regulates collagenolytic activity of alternatively activated resident macrophages. J. Invest. Dermatol. 135, 2377–2384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rohani, M. G. & Parks, W. C. Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46, 113–121 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Tu, M. M. et al. Targeting DDR2 enhances tumor response to anti-PD-1 immunotherapy. Sci. Adv. 5, eaav2437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhuang, J. et al. TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci. Rep. 5, 11924 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Goulet, C. R. et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFβ signaling. Mol. Cancer Res. 16, 1196–1204 (2018).

    Article  CAS  Google Scholar 

  119. Yan, L., Wang, P., Fang, W. & Liang, C. Cancer-associated fibroblasts-derived exosomes-mediated transfer of LINC00355 regulates bladder cancer cell proliferation and invasion. Cell Biochem. Funct. 38, 257–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Joseph, M. & Enting, D. Immune responses in bladder cancer — role of immune cell populations prognostic factors and therapeutic implications. Front. Oncol. 9, 1270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kawanishi, H. et al. Secreted CXCL1 is a potential mediator and marker of the tumor invasion of bladder cancer. Clin. Cancer Res. 14, 2579–2587 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Miyake, M. et al. CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer. Neoplasia 18, 636–646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Said, N., Sanchez-Carbayo, M., Smith, S. C. & Theodorescu, D. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J. Clin. Invest. 122, 1503–1518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chu, M. & Zhang, C. Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer. Sci. Rep. 8, 1539 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Huang, Z. et al. Bladder cancer cells interact with vascular endothelial cells triggering EGFR signals to promote tumor progression. Int. J. Oncol. 54, 1555–1566 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Faltas, B. M. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat. Genet. 48, 1490–1499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Winters, B. R. Genomic distinctions between metastatic lower and upper tract urothelial carcinoma revealed through rapid autopsy. JCI Insight 4, e128728 (2019).

    Article  PubMed Central  Google Scholar 

  128. Goodison, S. et al. A multiplex urinary immunoassay for bladder cancer detection: analysis of a Japanese cohort. J. Transl Med. 14, 287 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Shimizu, Y. et al. A multiplex immunoassay for the non-invasive detection of bladder cancer. J. Transl Med. 14, 31 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Arici, A. et al. Interleukin-8 induces proliferation of endometrial stromal cells: a potential autocrine growth factor. J. Clin. Endocrinol. Metab. 83, 1201–1205 (1998).

    CAS  PubMed  Google Scholar 

  131. O’Connell, J. T. et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl Acad. Sci. USA 108, 16002–16007 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tashiro, Y. et al. Inhibition of PAI-1 induces neutrophil-driven neoangiogenesis and promotes tissue regeneration via production of angiocrine factors in mice. Blood 119, 6382–6393 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Bancroft, C. C. et al. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-κB signal pathways. Clin. Cancer Res. 7, 435–442 (2001).

    CAS  PubMed  Google Scholar 

  135. Metheny-Barlow, L. J. & Li, L. Y. The enigmatic role of angiopoietin-1 in tumor angiogenesis. Cell Res. 13, 309–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, G. et al. Validation and clinicopathologic associations of a urine-based bladder cancer biomarker signature. Diagn. Pathol. 9, 200 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Furuya, H. et al. Prognostic significance of lymphocyte infiltration and a stromal immunostaining of a bladder cancer associated diagnostic panel in urothelial carcinoma. Diagnostics 10, 14 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  138. Chen, P. et al. MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting α2β1 integrin activation. PLoS ONE 4, e6565 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Miyake, M. et al. Clinical implications in the shift of syndecan-1 expression from the cell membrane to the cytoplasm in bladder cancer. BMC Cancer 14, 86 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Wong, Y. N. S. et al. Urine-derived lymphocytes as a non-invasive measure of the bladder tumor immune microenvironment. J. Exp. Med. 215, 2748–2759 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Volkmer, J. P. et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc. Natl Acad. Sci. USA 109, 2078–2083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wu, J. et al. Effects of increased Kindlin-2 expression in bladder cancer stromal fibroblasts. Oncotarget 8, 50692–50703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhu, H., Chen, H., Wang, J., Zhou, L. & Liu, S. Collagen stiffness promoted non-muscle-invasive bladder cancer progression to muscle-invasive bladder cancer. Onco Targets Ther. 12, 3441–3457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–1421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Szarvas, T. et al. Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer. Hum. Pathol. 45, 674–682 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Lodillinsky, C. et al. Bacillus Calmette Guerin induces fibroblast activation both directly and through macrophages in a mouse bladder cancer model. PLoS ONE 5, e13571 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Wang, L. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 9, 3503 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. van Puffelen, J. H. et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol. 17, 513–525 (2020).

    Article  PubMed  Google Scholar 

  149. Ratliff, T. L., Ritchey, J. K., Yuan, J. J., Andriole, G. L. & Catalona, W. J. T-cell subsets required for intravesical BCG immunotherapy for bladder cancer. J. Urol. 150, 1018–1023 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. [No authors listed.] Nod for atezolizumab in advanced bladder cancer. Cancer Discov. 7, OF4 (2017).

  152. Inman, B. A., Longo, T. A., Ramalingam, S. & Harrison, M. R. Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin. Cancer Res. 23, 1886–1890 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Powles, T. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 391, 748–757 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Wolf, M. T. et al. A biologic scaffold-associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy. Sci. Transl Med. 11, eaat7973 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nguyen, D. P. & Thalmann, G. N. Contemporary update on neoadjuvant therapy for bladder cancer. Nat. Rev. Urol. 14, 348–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Long, X. et al. Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis. 10, 375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Winters, B. R. et al. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy. Urol. Oncol. 36, 342.e7–342.e14 (2018).

    Article  CAS  Google Scholar 

  159. Efstathiou, J. A. et al. Impact of immune and stromal infiltration on outcomes following bladder-sparing trimodality therapy for muscle-invasive bladder cancer. Eur. Urol. 76, 59–68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Taber, A. et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis. Nat. Commun. 11, 4858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hayashi, K. et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat. Commun. 11, 6299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nikolos, F. et al. Cell death-induced immunogenicity enhances chemoimmunotherapeutic response by converting immune-excluded into T-cell inflamed tumors. Nat. Commun. 13, 1487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. O’Keeffe, M. B. et al. Investigation of pericytes, hypoxia, and vascularity in bladder tumors: association with clinical outcomes. Oncol. Res. 17, 93–101 (2008).

    Article  PubMed  Google Scholar 

  164. Dyrskjot, L. et al. Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR. Br. J. Cancer 107, 1392–1398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dyrskjøt, L. et al. Prognostic impact of a 12-gene progression score in non-muscle-invasive bladder cancer: a prospective multicentre validation study. Eur. Urol. 72, 461–469 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.-C.L., H.-M.L., C.R. and K.S.C. researched data for the article. Y.-C.L., H.-M.L. and K.S.C. contributed substantially to discussion of the content. Y.-C.L., H.-M.L., C.R. and K.S.C. wrote the article. Y.-C.L., H.-M.L., D.T., W.C.P. and K.S.C. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Keith Syson Chan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Lars Dyrskjøt, François Radvanyi and Edmund Chiong for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YC., Lam, HM., Rosser, C. et al. The dynamic roles of the bladder tumour microenvironment. Nat Rev Urol 19, 515–533 (2022). https://doi.org/10.1038/s41585-022-00608-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00608-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer