Skip to main content
Log in

Changes in the Electrical Conductivity of Polypropylene Modified with Nanoparticles of Oxide Compounds

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The paper presents the results of studying the effect of modifying polypropylene with nanoparticles of Al2O3, SiO2 and TiO2 on the electrical conductivity before and after irradiation with an electron beam (E = 30 keV, Φ = 2 × 1016 cm–2). A technique for manufacturing nanocomposites based on polypropylene with the addition of nanoparticles is described. As a result of the studies, an increase in the electrical conductivity up to 34% is revealed with the introduction of nanoparticles into the bulk of the polymer. Irradiation with a flow of charged particles also leads to a slight increase in the electrical conductivity, by 5–6%. Such materials are used in electromagnetic-radiation shielding and antistatic coatings of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. M. Mikhailov, S. M. Lebedev, A. N. Sokolovskiy, and V. A. Goronchko, Polym. Compos. 40, 3050 (2019). https://doi.org/10.1002/pc.25148

    Article  CAS  Google Scholar 

  2. V. A. Goronchko, in Proc. XLVII Int. Youth Sci. Conf. “Gagarin Readings” (Mosk. Aviats.-Tekhnol. Univ., Moscow, 2021), p. 996.

  3. F. I. Akhmedov, A. Z. Asadova, M. E. Guseinova, and A. D. Kuliev, Surf. Eng. Appl. Electrochem. 47, 388 (2011). https://doi.org/10.3103/S1068375511050024

    Article  Google Scholar 

  4. O. A. Ageev, Yu. N. Varzarev, and V. A. Smirnov, Izv. Yuzhn. Fed. Univ., Ser. Tekh. Nauki, No. 4, 77 (2011).

    Google Scholar 

  5. R. Moučka, M. Mravčáková, J. Vilčáková, M. Omastová, and P. Sáha, Mater. Des. 32, 2006 (2011).

    Article  Google Scholar 

  6. I. Karbovnyk, I. Olenych, and O. Aksimentyeva, Nanoscale Res. Lett. 11, 84 (2016). https://doi.org/10.1186/s11671-016-1293-0

    Article  CAS  Google Scholar 

  7. A. Whelan, Polymer Technology Dictionary (Springer, New York, 2012).

    Google Scholar 

  8. A. Ahamad, A. Chaudhari, C. Patil, P. Mahulikar, and D. Hundiwale, Polym.-Plast. Technol. Eng. 51, 786 (2012). https://doi.org/10.1080/03602559.2012.663045

    Article  CAS  Google Scholar 

  9. L. G. Kositsyn, M. M. Mikhailov, N. Ya. Kuznetsov, and M. I. Dvoretskii, Instrum. Exp. Tech. 28, 929 (1985).

    Google Scholar 

  10. D. Coetzee, M. Venkataraman, J. Militky, and M. Petru, Polymers 12, 742 (2020). https://doi.org/10.3390/polym12040742

    Article  CAS  Google Scholar 

  11. E. Huseynov, Phys. Lett. A 380, 3086 (2016).

    Article  CAS  Google Scholar 

  12. E. I. Chereches and A. A. Minea, Nanomaterials 9, 1228 (2019). https://doi.org/10.3390/nano9091228

    Article  CAS  Google Scholar 

  13. V. Neshchimenko, C. Li, M. Mikhailov, and J. Lv, Nanoscale 10, 22335 (2018). https://doi.org/10.1039/C8NR04455D

    Article  CAS  Google Scholar 

  14. N. L. Singh, A. Sharma, V. Shrinet, A. K. Rakshit, and D. K. Avasthi, Bull. Mater. Sci. 27, 263 (2004). https://doi.org/10.1007/BF02708515

    Article  CAS  Google Scholar 

  15. P. Svoboda, K. Trivedi, K. Stoklasa, D. Svobodova, and T. Ougizawa, R. Soc. Open Sci. 8, 202250 (2021). https://doi.org/10.1098/rsos.202250

    Article  CAS  Google Scholar 

  16. F. I. Akhmedov, Fiz. Khim. Obrab. Mater., No. 1, 14 (2015).

  17. M. Irfan, S. Ali, M. Tahir, and M. Rafique, Polym. Polym. Compos. 27 (3), 103 (2019). https://doi.org/10.1177/0967391118809437

    Article  CAS  Google Scholar 

  18. J. Wang, Y. Kazemi, S. Wang, M. Hamidinejad, M. B. Mahmud, P. Potschke, and C. B. Park, Composites, Part B 183, 107663 (2020).

    Article  CAS  Google Scholar 

  19. I. N. Bekman, Measurement of Ionizing Radiation: Lectures (Mosk. Gos. Univ., Moscow, 2006) [in Riussian].

    Google Scholar 

Download references

Funding

The study was carried out with financial support of the Russian Foundation for Basic Research within the framework of scientific project no. 20-32-90 096.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Mikhailov or V. A. Goronchko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, M.M., Goronchko, V.A. Changes in the Electrical Conductivity of Polypropylene Modified with Nanoparticles of Oxide Compounds. J. Surf. Investig. 16, 343–346 (2022). https://doi.org/10.1134/S1027451022030284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030284

Keywords:

Navigation