Skip to main content
Log in

Effect of Pressure on the Temperature Dependence of the Effective Thermal Conductivity of Gallium Antimonide with Different Degrees of Ordering

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of experimental measurements of the temperature dependence of the effective thermal conductivity of various forms of gallium antimonide (single crystal, polycrystals) are analyzed. The thermal conductivity is measured by the absolute steady-state method in the temperature and pressure ranges 273–423 K and 0.1–350 MPa, respectively. For polycrystalline compounds, the temperature dependence of the effective thermal conductivity in the entire investigation range is shown to decrease with pressure, retaining a pronounced power-law character. The pressure dependences of both the relative effective thermal conductivity at a fixed temperature and the dependence of the relative change in the power-law coefficient of the temperature dependence within the experimental error could be approximated by two-parameter power functions. A description of the PT dependence of the effective thermal conductivity in the entire investigation range is proposed, for which the correlative relationship of the pressure components is found. The anomalous behavior of the temperature dependence of the thermal conductivity of a single-crystal GaSb sample with an increase in pressure is revealed, for which a significant increase in the absolute value of the power-law coefficient of the temperature dependence is observed up to ~1.5 at P = 330 MPa. The pressure dependences of the effective thermal conductivity demonstrate a significantly greater and nonlinear relative increase in the thermal conductivity compared to a single crystal, which indicates a large contribution to the effective thermal conductivity of the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Eucken, Ann. Phys. 339, 185 (1911). https://doi.org/10.1002/andp.19113390202

    Article  Google Scholar 

  2. P. Debye, Ann. Phys. 344, 789 (1912). https://doi.org/10.1002/andp.19123441404

    Article  Google Scholar 

  3. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Science, Oxford, 2001).

    Book  Google Scholar 

  4. S. N. Emirov, A. A. Aliverdiev, R. M. Aliev, E. N. Ramazanova, Yu. P. Zarichnyak, and B. A. Grigor’ev, Bull. Russ. Acad. Sci.: Phys. 85, 983 (2021). https://doi.org/10.3103/S1062873821090100

    Article  CAS  Google Scholar 

  5. S. Emirov, A. Aliverdiev, V. Beybalaev, and A. Amirova, Therm. Sci. 25 (4A), 2493 (2021). https://doi.org/10.2298/TSCI200408176E

    Article  Google Scholar 

  6. S. N. Emirov, A. A. Aliverdiev, V. D. Beybalaev, E. N. Ramazanova, R. M. Aliev, and A. A. Amirova, Bull. Russ. Acad. Sci.: Phys. 85, 979 (2021). https://doi.org/10.3103/S1062873821090094

    Article  CAS  Google Scholar 

  7. S. N. Emirov, A. A. Aliverdiev, Yu. P. Zarichnyak, and R. M. Emirov, Rock Mech. Rock Eng. 54, 3165 (2021). https://doi.org/10.1007/s00603-020-02353-3

    Article  Google Scholar 

  8. P. S. Dutta and H. L. Bhat, J. Appl. Phys. 81, 5821 (1997). https://doi.org/10.1063/1.365356

    Article  CAS  Google Scholar 

  9. I. A. Kirovskaya, L. V. Novgorodtseva, O. V. Kropotin, and Yu. I. Matyash, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 586 (2021). https://doi.org/10.1134/S1027451021030277

    Article  CAS  Google Scholar 

  10. Kh. I. Amirkhanov, N. L. Kramynina, and S. N. Emirov, Fiz. Tverd. Tela 25, 2486 (1983).

    CAS  Google Scholar 

  11. Ya. B. Magomedov and S. N. Emirov, Effect of Pressure on High-Temperature Thermal Conductivity of Semiconductors (Nauka, Makhachkala, 2017) [in Russian].

  12. S. M. Luguev, N. L. Kramynina, and N. V. Lugueva, Phys. Solid State 59, 633 (2017). https://doi.org/10.1134/S1063783417030234

    Article  CAS  Google Scholar 

  13. Z. U. Borisova, Chemistry of Glassy Semiconductors (Leningrad. Gos. Univ., Leningrad, 1972) [in Russian].

    Google Scholar 

  14. Z. Du, S. Song, and X. Sun, Phys. B (Amsterdam, Neth.) 609, 412914 (2021). https://doi.org/10.1016/j.physb.2021.412914

  15. V. N. Kumar, M. Arivanandan, T. Koyoma, H. Udono, Y. Inatomi, and Y. Hayakawa, Appl. Phys. A 122, 885 (2016). https://doi.org/10.1007/s00339-016-0409-9

    Article  CAS  Google Scholar 

  16. S. Yun, T. Guo, Y. Li, J. Zhang, H. Li, J. Chen, L. Kang, and A. Huang, Ceram. Int. 44, 22023 (2018). https://doi.org/10.1016/j.ceramint.2018.08.193

    Article  CAS  Google Scholar 

  17. E. F. Steigmeier and I. Kudman, Phys. Rev. 141, 767 (1966). https://doi.org/10.1103/PhysRev.141.767

    Article  CAS  Google Scholar 

  18. J. P. Feser, D. Xu, H. Lu, Y. Zhao, A. Shakouri, A. C. Gossard, and A. Majumdar, Appl. Phys. Lett. 103, 103102 (2013). https://doi.org/10.1063/1.4820151

    Article  CAS  Google Scholar 

  19. Q. Fu, Z. Wu, and J. Li, RSC Adv. 10, 28415 (2020). https://doi.org/10.1039/d0ra00898b

  20. G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials (Energiya, Leningrad, 1974) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The paper is dedicated to the memory of Prof. S.N. Emirov (1935–2020).

Funding

The work was carried out within the framework of planned topics of the state assignment at the Institute for Geothermal Research and Renewable Energy, a Branch of the Joint Institute for High Temperatures, Russian Academy of Sciences, with partial support from the Russian Foundation for Basic Research (grant no. 20-08-00319a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Aliverdiev.

Ethics declarations

We declare that we have no conflict of interest.

Additional information

In memory of Subkhanverdi Nurmagomedovich Emirov, Doctor of Engineering Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliev, R.M., Aliverdiev, A.A., Zarichnyak, Y.P. et al. Effect of Pressure on the Temperature Dependence of the Effective Thermal Conductivity of Gallium Antimonide with Different Degrees of Ordering. J. Surf. Investig. 16, 338–342 (2022). https://doi.org/10.1134/S1027451022030211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030211

Keywords:

Navigation