Skip to main content
Log in

Abstract

Project of the proton accelerator-driven compact neutron source DARIA (Dedicated for Academic Research and Industrial Application) is developed in order to replace small and middle flux neutron sources based on the nuclear reactors. DARIA has a uniquely high ratio of efficiency to cost due to deep optimization of each key element of the system (proton injector and accelerator, target, neutron moderator and neutron instruments. A unique ECR ion source, developed at the IAP RAS, would be used as a proton beam injector. In such device the plasma is heated by the powerful 28 GHz gyrotron radiation, providing a record level of volumetric energy input for such systems over 100 W/cm3. The high plasma density and the optimal electron temperature provide proton beams formation with a current of up to several hundred mA and an emittance that meets the requirements of modern accelerators. The paper discusses the advantages of using such an ion source, its scheme and design performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Golubev, I. Izotov, S. Razin, A. Sidorov, V. Skalyga, A. Vodopyanov, V. Zorin, and A. Bokhanov, Nucl. Instrum. Methods Phys. Res., Sect. B 256, 537 (2007). https://doi.org/10.1016/j.nimb.2006.12.053

    Article  CAS  Google Scholar 

  2. V. Skalyga, I. Izotov, S. Golubev, A. Sidorov, S. Razin, A. Vodopyanov, O. Tarvainen, H. Koivisto, and T. Kalvas, Rev. Sci. Instrum. 87, 02A716 (2016). https://doi.org/10.1063/1.4934213

  3. V. A. Skalyga, I. V. Izotov, A. V. Sidorov, S. V. Golubev, and S. V. Razin, Rev. Sci. Instrum. 88, 033503 (2017). https://doi.org/10.1063/1.4978278

    Article  CAS  Google Scholar 

  4. V. A. Skalyga, I. V. Izotov, S. V. Golubev, S. V. Razin, A. F. Bokhanov, M. Y. Kazakov, R. L. Lapin, R. A. Shaposhnikov, E. A. Mironov, A. V. Voitovich, O. V. Palashov, G. G. Denisov, V. I. Belousov, D. I. Sobolev, M. Y. Shmelev, M. Y. Glyavin, A. I. Tsvetkov, M. V. Morozkin, and M. D. Proyavin, AIP Conf. Proc. 2011, 030013 (2018). https://doi.org/10.1063/1.5053274

    Article  Google Scholar 

  5. V. Skalyga, I. Izotov, S. Golubev, A. Sidorov, S. Razin, A. Strelkov, O. Tarvainen, H. Koivisto, and T. Kalvas, J. Appl. Phys. 118, 093301 (2015). https://doi.org/10.1063/1.4929955

    Article  CAS  Google Scholar 

  6. V. Skalyga, I. Izotov, S. Razin, A. Sidorov, S. Golubev, T. Kalvas, H. Koivisto, and O. Tarvainen, Rev. Sci. Instrum. 85, 02A702 (2014). https://doi.org/10.1063/1.4825074

  7. V. Skalyga, I. Izotov, S. Golubev, A. Vodopyanov, and O. Tarvainen, Rev. Sci. Instrum. 87, 02A715 (2016). https://doi.org/10.1063/1.4934208

  8. T. Kalvas, O. Tarvainen, T. Ropponen, O. Steczkiewicz, J. Ärje, and H. Clark, Rev. Sci. Instrum. 81, 02B703 (2010). https://doi.org/10.1063/1.3258608

  9. S. S. Vybin, I. V. Izotov and V. A. Skalyga, Plasma Sources Sci. Technol. 29, 11LT02 (2020). https://doi.org/10.1088/1361-6595/abbf9c

    Article  CAS  Google Scholar 

  10. J. Knaster, P. Garin, H. Matsumoto, Y. Okumura, M. Sugimoto, F. Arbeiter, P. Cara, S. Chel, A. Facco, P. Favuzza, T. Furukawa, R. Heidinger, A. Ibarra, T. Kanemura, A. Kasugai, H. Kondo, V. Massaut, J. Molla, G. Micciche, S. O’hira, K. Sakamoto, T. Yokomine, E. Wakai, and the IFMIF/EVEDA Integrated Project Team, Nucl. Fusion 57, 102016 (2017). https://doi.org/10.1088/1741-4326/aa6a6a

    Article  CAS  Google Scholar 

  11. S. Grigoriev, E. Iashina, and K. Pavlov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 1132 (2019). https://doi.org/10.1134/S1027451019060314

    Article  CAS  Google Scholar 

  12. J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao, X. H. Zhou, X. W. Ma, Y. He, L. Z. Ma, D. Q. Gao, J. Meng, Z. Xu, R. S. Mao, W. Zhang, Y. Y. Wang, L. T. Sun, Y. J. Yuan, P. Yuan, W. L. Zhan, J. Shi, W. P. Chai, D. Y. Yin, P. Li, J. Li, L. J. Mao, J. Q. Zhang, and L. N. Sheng, Nucl. Instrum. Methods Phys. Res., Sect. B 317, 263 (2013). https://doi.org/10.1016/j.nimb.2013.08.046

    Article  CAS  Google Scholar 

  13. N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, and P. P. Tesch, J. Vac. Sci. Technol., B 24, 2902 (2006). https://doi.org/10.1116/1.2366617

    Article  CAS  Google Scholar 

  14. M. Sugitani, Rev. Sci. Instrum. 85, 02C315 (2014). https://doi.org/10.1063/1.4854155

  15. D. Faircloth, O. Tarvainen, S. Lawrie, T. Sarmento, N. Savard, R. Abel, J. Macgregor, M. Whitehead, T. Wood, and C. Cahill, Rev. Sci. Instrum. 91, 043307 (2020). https://doi.org/10.1063/1.5129675

    Article  CAS  Google Scholar 

  16. J. Komppulaa and O. Tarvainen, Phys. Plasmas 22, 103516 (2015). https://doi.org/10.1063/1.4934229

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Ministry of Science and Higher Education of the Russian Federation grant no. 075-15-2021-1358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Izotov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalyga, V.A., Izotov, I.V., Vybin, S.S. et al. Design of the Proton Injector for Compact Neutron Source DARIA. J. Surf. Investig. 16, 427–433 (2022). https://doi.org/10.1134/S1027451022030399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030399

Keywords:

Navigation