Skip to main content
Log in

Influence of Multiple-Elastic-Scattering Processes in Multicomponent Targets on the Intensity of the Peaks of Elastically Reflected Electrons

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A solution to the boundary problem for describing the formation of peaks of electrons elastically reflected from multicomponent samples is presented. It is shown that the problem leads to Lyapunov-type equations and allows the construction of an effective numerical solution. A small-angle theory for the elastic reflection of electrons from multicomponent materials is developed, which makes it possible to obtain analytical solutions that describe the intensity of the peaks of electrons reflected from various target components. A method is developed for interpreting and quantitatively processing the peaks of elastically reflected electrons, taking into account multiple scattering effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. R. Went and M. Vos, Surf. Interface Anal. 39, 871 (2007). https://doi.org/10.1002/sia.2603

    Article  CAS  Google Scholar 

  2. M. Vos, K. Aizel, and A. Winkelmann, Surf. Sci. 604, 893 (2010). https://doi.org/10.1016/j.susc.2010.02.016

    Article  CAS  Google Scholar 

  3. M. Vos, G. P. Cornish, and E. Weigold, Rev. Sci. Instrum. 71, 3831 (2000). https://doi.org/10.1063/1.1290507

    Article  CAS  Google Scholar 

  4. M. Vos, Ultramicroscopy 92, 143 (2002). https://doi.org/10.1016/S0304-3991(02)00127

    Article  CAS  Google Scholar 

  5. S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science (Springer, Berlin, 2013).

    Book  Google Scholar 

  6. V. P. Afanas’ev, A. S. Gryazev, D. S. Efremenko, P. S. Kaplya, and O. Yu. Ridzel, J. Phys.: Conf. Ser. 748, 012005 (2016). https://doi.org/10.1088/1742-6596/748/1/012005

    Article  CAS  Google Scholar 

  7. V. P. Afanas’ev, A. S. Gryazev, P. S. Kaplya, M. Koppen, O. Yu. Ridzel, N. Yu. Subbotin, and P. Hansen, J. Phys.: Conf. Ser. 891, 012303 (2017). https://doi.org/10.1088/1742-6596/891/1/012303

    Article  CAS  Google Scholar 

  8. V. P. Afanas’ev, A. S. Gryazev, P. S. Kaplya, M. Koppen, and A. V. Rybakova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 828 (2019). https://doi.org/10.1134/S1027451019050021

    Article  Google Scholar 

  9. V. P. Afanas’ev, P. S. Kaplya, and L. G. Lobanova, J. Phys.: Conf. Ser. 1683, 032004 (2020). https://doi.org/10.1088/1742-6596/1683/3/032004

    Article  CAS  Google Scholar 

  10. V. P. Afanas’ev, V. P. Budak, D. S. Efremenko, and P. S. Kaplya, Svetotekhnika, No. 5, 44 (2018).

  11. V. P. Afanas’ev, M. V. Afanas’ev, A. V. Lubenchenko, A. A. Batrakov, D. S. Efremenko, and M. Vos, J. Electron Spectrosc. Relat. Phenom. 177, 35 (2010). https://doi.org/10.1016/j.elspec.2010.01.002

    Article  CAS  Google Scholar 

  12. V. P. Afanas’ev and D. Naujoks, Z. Phys. B 84, 397 (1991). https://doi.org/10.1007/BF01314014

    Article  Google Scholar 

  13. R. Oswald, E. Kasper, and K. Gaukler, J. Electron Spectrosc. Relat. Phenom. 61, 251 (1993). https://doi.org/10.1016/0368-2048(93)80019-i

    Article  Google Scholar 

  14. V. P. Afanas’ev, P. S. Kaplya, and E. D. Lisitsyna, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 326 (2016). doi 10. 1134/S1027451016010043

  15. V. P. Afanas’ev, D. S. Efremenko, and P. S. Kaplya, J. Electron Spectrosc. Relat. Phenom. 210, 16 (2016). https://doi.org/10.1016/j.elspec.2016.04.006

    Article  CAS  Google Scholar 

  16. L. D. Landau, J. Phys. 8, 201 (1944).

    CAS  Google Scholar 

  17. V. P. Afanas’ev and N. V. Yagova, Z. Phys. B 92, 199 (1993). https://doi.org/10.1007/BF01312178

    Article  Google Scholar 

  18. M. Vos, G. G. Marmitt, and P. L. Grande, Surf. Interface Anal. 48, 415 (2016). https://doi.org/10.1002/sia.5948

    Article  CAS  Google Scholar 

  19. F. Salvat-Pujol and W. Werner, Phys. Rev. B 83, 195416 (2011). https://doi.org/10.1103/PhysRevB.83.195416

    Article  CAS  Google Scholar 

  20. NIST Electron Elastic-Scattering Cross-Section Database (Natl. Inst. Stand. Technol., Gaithersburg, 2010). https://srdata.nist.gov/srd64.

  21. Dirac Partial-Wave Calculation of Elastic Scattering of Electrons and Positrons by Atoms, Positive Ions and Molecules (2005). http://cpc.cs.qub.ac.uk/cpc/summaries/ADUS.

  22. S. Tanuma, J. Powell, and D. R. Penn, Surf. Interface Anal. 37, 1 (2005). https://doi.org/10.1002/sia.1997

    Article  CAS  Google Scholar 

Download references

Funding

The study was conducted at the National Research University “MPEI” with financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment no. FSWF-2020-0023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Afanas’ev or L. G. Lobanova.

Ethics declarations

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, V.P., Lobanova, L.G. Influence of Multiple-Elastic-Scattering Processes in Multicomponent Targets on the Intensity of the Peaks of Elastically Reflected Electrons. J. Surf. Investig. 16, 384–389 (2022). https://doi.org/10.1134/S1027451022030193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030193

Keywords:

Navigation