Skip to main content
Log in

Thermodynamic Analysis of the Deoxidation Ability of Alkaline-Earth Metals in the Presence of Aluminum

  • THEORY OF METALLURGICAL PROCESSES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The phase boundaries in the Fe–Mg–Al–O, Fe–Ca–Al–O, Fe–Sr–Al–O, and Fe–Ba–Al–O systems at 1600°C are determined using the theory of construction of solubility surfaces of components in a metal. The equilibrium constants of the formation of alkaline-metal aluminates from the components of a metallic melt are estimated. The compositions of the nonmetallic inclusions formed upon melt deoxidation and equilibrated with liquid iron are determined. A complex mechanism of deoxidation with the formation of oxide compounds containing aluminum and alkaline-earth metal is found to take place in all systems at 0.01 wt % aluminum dissolved in a metallic melt and an alkaline-earth metal concentration of 0.001 wt %. The deoxidation ability curves of the alkaline-earth metals are constructed for a fixed aluminum concentration [Al] = 0.01 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Breitzmann, H.-J. Engell, and D. Janke, “Refining of steel melts using alkaline earth metals,” Steel Res. Int. 59 (7), 289–294 (1988). https://doi.org/10.1002/srin.198801505

    Article  CAS  Google Scholar 

  2. G. A. Irons and X.-P. Tong, “Treatment of steel with alkaline-earth elements,” ISIJ Int. 35 (7), 838–844 (1995). https://doi.org/10.2355/isijinternational.35.838

    Article  CAS  Google Scholar 

  3. I. V. Ryabchikov, A. G. Panov, and A. E. Kornienko, “Characteristics of modifiers,” Steel Transl. 37, 516–521 (2007). https://doi.org/10.3103/S0967091207060113

  4. A. A. Deryabin and E. Yu. Berestov, “On the mechanism of steel modification with alkaline-earth metals,” Elektrometallurgiya, No. 6, 35–38 (2008).

    Google Scholar 

  5. Yu. Ya. Skok, “Study of the deoxidation ability of the complex alloys containing alkaline-earth and rare-earth metals,” Protsessy Lit’ya, No. 3 (81), 8–12 (2010).

    Google Scholar 

  6. I. V. Bakin, N. A. Shaburova, I. V. Ryabchikov, V. G. Mizin, B. F. Belov, G. G. Mikhailov, and A. V. Senin, “Experimental study of refining and modification of steel with Si–Ca, Si–Sr, and Si–Ba alloys,” Steel Transl. 49 (8), 543–547 (2019). https://doi.org/10.3103/S0967091219080023

  7. I. V. Ryabchikov, V. G. Mizin, R. G. Usmanov, V. A. Golubtsov, and V. G. Milyuts, “Criteria of quality evaluation of the steel deoxidizers and modifiers,” Stal’, No. 2, 24–27 (2015).

  8. I. B. Provorova, E. V. Rozenberg, K. E. Baranovskii, V. I. Volosatikov, V. A. Rozum, A. N. Karas’, and M. S. Chernyavskaya, “A modifier for the outer-furnace treatment of the steel containing alkaline-earth metals,” Lit’e Metall. 83 (2), 14–18 (2016).

    Google Scholar 

  9. G. G. Mikhailov, O. V. Samoilova, L. A. Makrovets, and L. A. Smirnov, “Thermodynamic modeling of isotherms of oxygen solubility in liquid metal of the Fe–Mg–Al–O system,” Steel Transl. 49 (8), 522–527 (2019). https://doi.org/10.3103/S0967091219080114

  10. G. G. Mikhailov, L. A. Makrovets, and D. A. Vydrin, “Barium as a deoxidizer and modifier of liquid steel,” Vestn. YuUrGU, Ser. Metall. 13 (1), 45–50 (2013).

    Google Scholar 

  11. G. G. Mikhailov, L. A. Makrovets, O. V. Samoilova, and L. A. Smirnov, “Phase equilibria in the liquid steel deoxidized with aluminum and calcium in the presence of magnesium,” Russian Metallurgy (Metally) 2020 (6), 640–648 (2020). https://doi.org/10.1134/S0036029520060130

  12. G. G. Mikhailov, L. A. Makrovets, O. V. Samoilova, and I. V. Bakin, “Thermodynamic analysis of the deoxidation ability of strontium in liquid iron: phase stability diagram in Fe–Sr–O and Fe–Mg–Sr–O systems,” Chern. Metall. Byul. Nauchno-Tekh. Ekon. Inf. 75 (12), 1366–1373 (2019). https://doi.org/10.32339/0135-5910-2019-12-1366-1372

    Article  Google Scholar 

  13. J.-H. Park and H. Todoroki, “Control of MgO·Al2O3 spinel inclusions in stainless steel,” ISIJ Int. 50 (10), 1333–1346 (2010). https://doi.org/10.2355/isijinternational.50.1333

    Article  CAS  Google Scholar 

  14. H. Itoh, M. Hino, and S. Ban-Ya, “Thermodynamics on the formation of non-metallic inclusion of spinel (MgO·Al2O3) in liquid steel,” Tetsu-to-Hagané 84 (2), 85–90 (1998).

    Article  CAS  Google Scholar 

  15. Steelmaking Data Sourcebook. Japan Society for the Promotion of Science. The 19th Committee on Steelmaking (Gordon & Breach, New York, 1988).

  16. G. K. Sigworth and J. F. Elliott, “The thermodynamics of liquid dilute iron alloys,” Metal Sci. 8, 298–310 (1974).

    Article  CAS  Google Scholar 

  17. G. G. Mikhailov and D. A. Zherebtsov, “On the interaction of calcium and oxygen in liquid iron,” Mater. Sci. Forum 843, 52–61 (2016). https://doi.org/10.4028/www.scientific.net/MSF.843.52

  18. Yu. V. Balkovoi, R. A. Aleev, and V. K. Bakanov, Parameters of the First-Order Interaction in Iron-Based Melts (Chermetinformatsiya, Moscow, 1987).

    Google Scholar 

  19. S. W. Cho and H. Suito, “Assessment of calcium–oxygen equilibrium in liquid iron,” ISIJ Int. 34 (3), 265–269 (1994). https://doi.org/10.2355/isijinternational.34.265

    Article  CAS  Google Scholar 

  20. H. Prox, M. Hino, and S. Ban-Ya, “Assessment of Al deoxidation equilibrium in liquid iron,” Tetsu-to-Hagané 83 (12), 773–778 (1997).

    Article  Google Scholar 

  21. H.-Y. Zheng, S.-Q. Guo, M.-R. Qiao, et al., “Study on the modification of inclusions by Ca treatment in GCr18Mo bearing steel,” Adv. Manufact. 7 (4), 438–447 (2019). https://doi.org/10.1007/s40436-019-00266-1

    Article  CAS  Google Scholar 

  22. O. V. Samoilova, L. A. Makrovets, and I. V. Bakin, “Phase diagram of a FeO–SrO–BaO system,” Vestn. YuUrGU, Ser. Metall. 20 (3), 5–11 (2020). https://doi.org/10.14529/met200301

    Article  Google Scholar 

  23. O. V. Samoilova, L. A. Makrovets, and E. A. Trofimov, “Thermodynamic simulation of the phase diagram of the Cu2O–Na2O–K2O system,” Moscow University Chemistry Bulletin. 73 (3), 105–110 (2018). https://doi.org/10.3103/S0027131418030057

    Article  Google Scholar 

  24. F. Stein and M. Palm, “Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis,” Int. J. Mater. Res. 98 (7), 580–588 (2007).

    Article  CAS  Google Scholar 

  25. Y. Du, J. R. Zhao, C. Zhang, et al., “Thermodynamic modeling of the Fe–Mg–Si system,” J. Mining Metall., Sect. B 43 (1), 39–56 (2007). https://doi.org/10.2298/JMMB0701039D

    Article  CAS  Google Scholar 

  26. M. Berg, J. Lee, and D. Sichen, “Study on the equilibrium between liquid iron and calcium vapor,” Metall. Mater. Trans. B 48 (3), 1715–1720 (2017). https://doi.org/10.1007/s11663-017-0946-4

    Article  CAS  Google Scholar 

  27. I. S. Kulikov, “Deoxidation of iron with alkaline-earth metals,” Russ. Metall. (Metally), No. 6, 9–15 (1985).

  28. Yu. A. Ageev and S. A. Archugov, “Study of the solubility of alkaline-earth metals in liquid iron and iron-based alloys,” Zh. Fiz. Khim. LIX (4), 838–841 (1985).

    Google Scholar 

  29. B. Song, Q. Han, and C. Zhang, “Solubility of Ba in liquid iron and interaction effect of the third elements,” J. Univ. Sci. Technol. Beijing 7 (2), 82–85 (2000).

    CAS  Google Scholar 

  30. J. D. Seo and S. H. Kim, “Thermodynamic assessment of Mg deoxidation reaction of liquid iron and equilibria of [Mg]–[Al]–[O] and [Mg]–[S]–[O],” Steel Res. Int. 71 (4), 101–106 (2000). https://doi.org/10.1002/ srin.200005697

    Article  CAS  Google Scholar 

  31. I. H. Jung, S. A. Decterov, and A. D. Pelton, “Computer applications of thermodynamic databases to inclusion engineering,” ISIJ Int. 44 (3), 527–536 (2004). https://doi.org/10.2355/isijinternational.44.527

    Article  CAS  Google Scholar 

  32. K. Fujii, T. Nagasaka, and M. Hino, “Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO·Al2O3,” ISIJ Int. 40 (11), 1059–1066 (2004). https://doi.org/10.2355/isijinternational.40.1059

    Article  Google Scholar 

  33. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry (Pergamon, New York, 1979).

    Google Scholar 

  34. E. Schürmann, U. Braun, and W. Pluschkell, “Investigation on the equilibria between Al–Ca–O-containing iron melts and CaO–Al2O3–FeOn slags,” Steel Res. Int. 69 (9), 355–358 (1998). https://doi.org/10.1002/srin.199805564

    Article  Google Scholar 

  35. K. Taguchi, H. Ono-Nakazato, T. Usui, K. Marukawa, K. Katogi, and H. Kosaka, “Complex deoxidation equilibria of molten iron by aluminum and calcium,” ISIJ Int. 45 (11), 1572–1576 (2005). https://doi.org/10.2355/isijinternational.45.1572

    Article  CAS  Google Scholar 

  36. I.-H. Jung, S. A. Decterov, and A. D. Pelton, “Thermodynamic model for deoxidation equilibria in steel,” Metall. Mater. Trans. B 35 (3), 493–507 (2004). https://doi.org/10.1007/s11663-004-0050-4

    Article  Google Scholar 

  37. I. V. Bakin, G. G. Mikhailov, V. A. Golubtsov, I. V. Ryabchikov, and L. E. Dresvyankina, “Methods for improving the efficiency of steel modifying,” Mater. Sci. Forum 946, 215–222 (2019). https://doi.org/10.4028/www.scientific.net/MSF.946.215

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Makrovets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makrovets, L.A., Samoilova, O.V., Bakin, I.V. et al. Thermodynamic Analysis of the Deoxidation Ability of Alkaline-Earth Metals in the Presence of Aluminum. Russ. Metall. 2022, 575–582 (2022). https://doi.org/10.1134/S0036029522060180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522060180

Keywords:

Navigation