Skip to main content
Log in

Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 1 (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This review provides an analysis of recent research data on the development of adsorbents for high-performance adsorbed natural gas storage systems. This is Part 1 of the review and describes the requirements for potential methane adsorbents. Carbon materials are shown to possess a variety of properties suitable for natural gas storage applications. The paper discusses various works focused on the generation and improvement of the adsorption properties of highly porous carbon materials, including activated carbons, carbon fibers, nanoporous spheres, and graphene-based composites. This discussion is strongly focused on methods employed to enhance the methane adsorption capacity of carbon adsorbents, particularly by developing their porous structure, functionalizing, increasing their density, and creating composites based on these adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Prognoz razvitiyajenergetiki mira i Rossii-2016 (Forecast of World and Russian Energy Development-2016), Makarov, A.A., Grigor’ev, L.M., and Mitrovaya, T.A., Eds., Moscow: INEI RAN–AC pri Pravitel’stve RF, 2016.

  2. Mason, J.A., Veenstrab, M.,and Long, J.R., Chem. Sci., 2014, vol. 5, pp. 32–51. https://doi.org/10.1039/c3sc52633j

    Article  CAS  Google Scholar 

  3. Strizhenov, E.M., Candidate Sci. (Tech.) Dissertation, Moscow, 2016.

  4. Beckner, M. and Dailly, A., Appl. Energy, 2016, vol. 162, pp. 506–514. https://doi.org/10.1016/j.apenergy.2015.10.110

    Article  CAS  Google Scholar 

  5. Kumar, K.V., Preuss, K., and Titirici, M.-M., Rodriguez Reinoso, F., Chem. Rev., 2017, vol. 117, pp. 1796–1825. https://doi.org/10.1021/acs.chemrev.6b00505

    Article  CAS  PubMed  Google Scholar 

  6. Sapozhnikov, S.V., Fomkin, A.A., Tretyakova, A.E., Safonov, V.V., Pribylov, A.A., Shevchenko, A.O., and Smirnov, I.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 612–617. https://doi.org/10.1134/S2070205117040190

    Article  CAS  Google Scholar 

  7. Veluswamy, H.P., Kumar, A., Seo, Y., Lee, Ju.D., and Linga, P., Appl. Energy, 2018, vol. 216, pp. 262–285. https://doi.org/10.1016/j.apenergy.2018.02.059

    Article  CAS  Google Scholar 

  8. Chiglintseva, A.S., Doctoral (Phys.-Math.) Disseration, Birsk, 2017.

  9. Wegrzyn, J. and Gurevich, M., Appl. Energy, 1996, vol. 55, no. 2, pp. 71–83. https://doi.org/10.1016/S0306-2619(96)00015-3

    Article  CAS  Google Scholar 

  10. Marco-Lozar, J.P., Kunowsky, M., Carruthers, J.D., and Linares-Solano, Á., Carbon, 2014, vol. 76, pp. 123–132. https://doi.org/10.1016/j.carbon.2014.04.058

    Article  CAS  Google Scholar 

  11. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Y., Shkolin, A.V., Strizhenov, E.M., and Khozina, E.V., Adsorption, 2017, vol. 23, pp. 327–339. https://doi.org/10.1007/s10450-016-9854-1

    Article  CAS  Google Scholar 

  12. Vasiliev, L., Kanonchik, L., and Kuzmich, M., Appl. Therm. Eng., 2020, vol. 116, pp. 184–209. https://doi.org/10.1016/j.applthermaleng.2020.116184

    Article  CAS  Google Scholar 

  13. Beckner, M. and Dailly, A., Appl. Energy, 2015, vol. 149, pp. 69–74. https://doi.org/10.1016/j.apenergy.2015.03.123

    Article  CAS  Google Scholar 

  14. Feroldi, M., Neves, A.C., Borba, C.E., and Alves, H.J., J. Cleaner Product., 2018, vol. 172, pp. 921–926. https://doi.org/10.1016/j.jclepro.2017.10.247

    Article  CAS  Google Scholar 

  15. Nie, Z., Lin, Y., and Jin, X., Front. Mech. Eng., 2016, vol. 11, no. 3, pp. 258–274. https://doi.org/10.1007/s11465-016-0381-2

    Article  Google Scholar 

  16. Kanonchik, L.E. and Vasiliev, L.L., Int. J. Heat Mass Transfer, 2019, vol. 143, pp. 118374–118382. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.024

    Article  CAS  Google Scholar 

  17. Prosniewski, M., Rash, T., Romanos, J., Gillespie, A., Stalla, D., Knight, E., Smith, A., and Pfeifer, P., Fuel, 2019, vol. 244, pp. 447–453. https://doi.org/10.1016/j.fuel.2019.02.022

    Article  CAS  Google Scholar 

  18. Bimbo, N., Smith, J.P., Aggarwal, H., Physick, A.J., Pugsley, A., Barbour, L.J., Ting, V.P., and Mays, T.J., Chem. Eng. Res. Des., 2021, vol. 169, pp. 153–164. https://doi.org/10.1016/j.cherd.2021.03.003

    Article  CAS  Google Scholar 

  19. Barbosa Mota, J.P., Rodrigljes, A.E., Saatdjlan, E., and Tondeur, D., Carbon, 1997, vol. 35, no. 9, pp. 1259–1270. https://doi.org/10.1016/S0008-6223(97)00075-4

    Article  Google Scholar 

  20. Sóez, A. and Toledo, M., Appl. Therm. Eng., 2009, vol. 29, pp. 2617–2623. https://doi.org/10.1016/j.applthermaleng.2008.10.020

    Article  CAS  Google Scholar 

  21. Sahoo, P.K., Prajwal, B.P., Dasetty, S.K., John, M., Newalkar, B.L., Choudary, N.V., and Ayappa, K.G., Appl. Energy, 2014, vol. 119, pp. 190–203. https://doi.org/10.1016/j.apenergy.2013.12.057

    Article  CAS  Google Scholar 

  22. Ybyraiymkul, D., Choon-Ng, K., and Kaltayev, A., Appl. Therm. Eng., 2017, vol. 125, pp. 523–531. https://doi.org/10.1016/j.applthermaleng.2017.06.147

    Article  Google Scholar 

  23. Wieme, J., Vandenbrande, S., Lamaire, A., Kapil, V., Vanduyfhuys, L., and Van Speybroeck, V., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 42, pp. 38697–38707. https://doi.org/10.1021/acsami.9b12533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mileo, P.G.M., Cavalcante, Jr.C.L., Möllmer, J., Lange, M., Hofmann, J., Sebastião, M.P., and Lucena, S.M.P., Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, vol. 462, pp. 194–201. https://doi.org/10.1016/j.colsurfa.2014.09.017

    Article  CAS  Google Scholar 

  25. Makal, T.A., Li, J.-R., Lu, W., and Zhou, H.-C., Сhem. Soc. Rev., 2012, vol. 41, pp. 7761–7779. https://doi.org/10.1039/C2CS35251F

    Article  CAS  Google Scholar 

  26. Wu, Z., Wee, V., Ma, X., and Zhao, D., Adv. Sustainable Systems, 2021, vol. 27, no. 4, pp. 2000200–2000211. https://doi.org/10.1002/adsu.202000200

    Article  CAS  Google Scholar 

  27. Patil, K.H. and Sahoo, S., J. Nat. Gas Sci. Eng., 2018, vol. 52, pp. 267–282. https://doi.org/10.1016/j.jngse.2018.01.008

    Article  CAS  Google Scholar 

  28. Casco, M.E., Martinez-Escandell, M., Gadea-Ramos, E., Kaneko, K., Silvestre-Albero, J., and RodriguezReinoso, F., Chem. Mater., 2015, vol. 27, pp. 959–964. https://doi.org/10.1021/cm5042524

    Article  CAS  Google Scholar 

  29. Saha, D., Bao, Z., Jia, F., and Deng, S., Environ. Sci. Technol., 2010, vol. 44, pp. 1820–1826. https://doi.org/10.1021/es9032309

    Article  CAS  PubMed  Google Scholar 

  30. Liu, J., Zhou, Y., Sun, Y., Su, W., and Zhou, L., Carbon, 2011, vol. 49, pp. 3731–3736. https://doi.org/10.1016/j.carbon.2011.05.005

    Article  CAS  Google Scholar 

  31. Kockrick, E., Schrage, C., Borchardt, L., Klain, N., Rose, M., Senkovska, I., and Kaskel, S., Carbon, 2010, vol. 48, no. 6, pp. 1707–1717. https://doi.org/10.1016/j.carbon.2010.01.004

    Article  CAS  Google Scholar 

  32. Gómez-Gualdrón, D.A., Wilmer, C.-.E., Farha, O.-K., Fahra, O., Hupp, J.T., and Snurr, R.Q., J. Phys. Chem. C, 2014, vol. 118, no. 13, pp. 6941–6951. https://doi.org/10.1021/jp502359q

    Article  CAS  Google Scholar 

  33. Duren, T., Sarkisov, L., Yaghi, O.M., and Snurr, R.Q., Langmuir, 2004, vol., 20, no. 7, pp. 2683–2689. https://doi.org/10.1021/la0355500

    Article  CAS  Google Scholar 

  34. Rowsell, J.L. and Yaghi, O.M., Microporous Mesoporous Mater., 2004, vol. 73, nos. 1–2, pp. 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  35. Kitagawa, S., Kitaura, R., and Noro, S., Angew. Chem. Int. Ed., 2004, vol. 43, no. 18, pp. 2334–2375. https://doi.org/10.1002/anie.200300610

    Article  CAS  Google Scholar 

  36. Wang, B., Côté, A.P., Furukawa, H., O’Keeffe, M., and Yaghi, O.M., Nature, 2008, vol. 453, pp. 207–211. https://doi.org/10.1038/nature06900

    Article  CAS  PubMed  Google Scholar 

  37. Yoo, J., Lee, S., Lee, C.K., Kim Ch.R, Fujigaya, T., Park, H.J., Nakashima, N., and Shim, J.K., RSC Adv., 2014, vol. 4, pp. 449614–49619. https://doi.org/10.1039/C4RA06792D

    Article  CAS  Google Scholar 

  38. García Blanco, A.A., Vallone, A.F., Korili, S.A., Gill, A., and Sapag, K., Microporous Mesoporous Mater., 2016, vol. 224, pp. 323–331. https://doi.org/10.1016/j.micromeso.2016.01.002

    Article  CAS  Google Scholar 

  39. Furukawa, H. and Yaghi, O.M., J. Am. Chem. Soc., 2009, vol. 131, no. 25, pp. 8875–8883. https://doi.org/10.1021/ja9015765

    Article  CAS  PubMed  Google Scholar 

  40. Hu, J., Zhao, J., and Yan, T., J. Phys. Chem. C, 2015, vol. 119, no. 4, pp. 2010–2014. https://doi.org/10.1021/jp512908k

    Article  CAS  Google Scholar 

  41. Dawson, R., Cooper, A.I., and Adams, D.J., Prog. Polym. Sci., 2012, vol. 37, pp. 530–563. https://doi.org/10.1016/j.progpolymsci.2011.09.002

    Article  CAS  Google Scholar 

  42. Li, F., Qian, Q., Zhang, Sh., Yan, F., and Yuan, G., J. Nat. Gas Sci. Eng., 2007, vol. 16, no. 4, pp. 363–370. https://doi.org/10.1016/S1003-9953(08)60005-5

    Article  CAS  Google Scholar 

  43. Ferey, G., Chem. Soc. Rev., 2008, vol. 37, pp. 191–214. https://doi.org/10.1039/B618320B

    Article  CAS  PubMed  Google Scholar 

  44. Pupier, O., Goetz, V., and Fiscal, R., Chem. Eng. Proc., 2005, vol. 44, pp. 71–79. https://doi.org/10.1016/j.cep.2004.05.005

    Article  CAS  Google Scholar 

  45. Policicchio, A., Maccallini, E., Agostino, R.G., Ciuchi, F., and Aloise, A., Fuel, 2013, vol. 104, pp. 813–821. https://doi.org/10.1016/j.fuel.2012.07.035

    Article  CAS  Google Scholar 

  46. Combined and Hybrid Adsorbents: Fundamentals and Applications, Loureiro, J.M. and Kartel, M.T., Eds., Netherlands: Springer, 2006.

  47. Carbon Capture and Sequestration: Integrating Technology, Monitoring and Regulation, Wilson, E.J. and Gerard, D., Eds., Iowa: Willey-Blackwell Pub., 2007.

  48. Alhasan, S., Carriveau, R., and Ting, D.S-K., Int. J. Environ. Studies, 2016, vol. 73, no. 3, pp. 343–356. https://doi.org/10.1080/00207233.2016.1165476

    Article  CAS  Google Scholar 

  49. Nanoporous Materials for Gas Storage. Green Energy and Technology, Kaneko, K. and Rodríguez-Reinoso, F., Eds., Springer Nature Singapore Pte Ltd., 2019. 402 p. https://doi.org/10.1007/978-981-13-3504-4_1

  50. He, Y., Chen, F., Li, B., Qian, G., Zhou, W., and Chen, B., Coord. Chem. Rev., 2018, vol. 373, pp. 167–198. https://doi.org/10.1016/j.ccr.2017.10.002

    Article  CAS  Google Scholar 

  51. DOE MOVE Program. Methane Opportunities for Vehicular Energy, Advanced Research Project Agency-Energy, U.S. Dept. of Energy. Funding Opportunity no. DE-FOA-0000672, 2012. https://arpa-e.energy.gov/technologies/programs/move

  52. Casco, M.E., Escandell, M.M., Kaneko, K., Silvestre-Alberto, J., and Rodriguez-Reinoso, F., Carbon, 2015, vol. 93, pp. 11–21. https://doi.org/10.1016/j.carbon.2015.05.029

    Article  CAS  Google Scholar 

  53. He, Y.B., Zhou, W., Qian, G.D., and Chen, B.L., Chem. Soc. Rev., 2014, vol. 43, pp. 5657–5678. https://doi.org/10.1039/C4CS00032C

    Article  CAS  PubMed  Google Scholar 

  54. Peng, Y., Krungleviciute, V., Eryazici, I., Hupp, J.T., Farha, O.K., and Yildirim, T., J. Am. Chem. Soc., 2013, vol. 135, pp. 11887–11894. https://doi.org/10.1021/ja4045289

    Article  CAS  PubMed  Google Scholar 

  55. Policicchio, A., Filosa, R., Abate, S., Desiderio, G., and Colavita, E., J. Porous Mater., 2017, vol. 24, pp. 905–922. https://doi.org/10.1007/s10934-016-0330-9

    Article  CAS  Google Scholar 

  56. Shen, J., Sulkowski, J., Beckner, M., and Dailly, A., Microporous Mesoporous Mater., 2015, vol. 212, pp. 80–90. https://doi.org/10.1016/j.micromeso.2015.03.032

    Article  CAS  Google Scholar 

  57. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  58. Dubinin, M.M., Chem. Rev., 1960, vol. 60, pp. 235–241. https://doi.org/10.1021/CR60204A006

    Article  CAS  Google Scholar 

  59. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  60. Lewelling, P., Rodriguez-Reinoso, F., and Rouquerol, J., Proc. of the 7-th Int. Symp. Characterization of porous solids VII, Studies in Surface Science and Catalysis, 2007, vol. 160, pp. 49–56. https://doi.org/10.1016/S0167-2991(07)80008-5

    Article  Google Scholar 

  61. Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Yakovlev, V.Yu., and Khozina, E.V., Russ. J. Phys. Chem., 2018, vol. 67, pp. 1814–1822. https://doi.org/10.1007/s11172-018-2294-1

    Article  CAS  Google Scholar 

  62. Wu, K., Chen, Z., Li, X., and Dong, X., Sci. Reports, 2016, vol. 6, pp. 33461–33471. https://doi.org/10.1038/srep33461

    Article  CAS  Google Scholar 

  63. Fomkin, A.A. and Petukhova, G.A., Russ. J. Phys. Chem., 2020, vol. 94, no. 3, pp. 516–525. https://doi.org/10.1134/S0036024420030097

    Article  CAS  Google Scholar 

  64. Thornton, A.W., Furman, S.A., Nain, K.M., Hill, A.J., Hill, J.M., and Hill, M.R., Microporous Mesoporous Mater., 2013, vol. 167, pp. 188–197. https://doi.org/10.1016/j.micromeso.2012.09.002

    Article  CAS  Google Scholar 

  65. Rahman, K.A., Chakraborty, A., Saha, B.B., and Ng, K.C., Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 565–573. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.056

    Article  CAS  Google Scholar 

  66. Zhu, Z.W. and Zheng, Q.R., Appl. Therm. Eng., 2016, vol. 108, pp. 605–613. https://doi.org/10.1016/j.applthermaleng.2016.07.146

    Article  CAS  Google Scholar 

  67. Zhao, J., Wang, Z., and Guo, P., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 3523–3530. https://doi.org/10.1021/acs.iecr.8b05762

    Article  CAS  Google Scholar 

  68. Gómez-Gualdrón, D.A., Simon, C.M., Lassman, W., Chen, D., Martin, R.L., Haranczyk, M., Fahra, O.K., Smit, B., and Snurr, R.Q., Chem. Eng. Sci., 2017, vol. 159, pp. 18–30. https://doi.org/10.1016/j.ces.2016.02.030

    Article  CAS  Google Scholar 

  69. Sreńscek-Nazzal, J., Kamin´ska, W., Michalkiewicz, B., Koren, Z.C., Ind. Crops Prod., 2013, vol. 47, pp. 153–159. https://doi.org/10.1016/j.indcrop.2013.03.004

    Article  CAS  Google Scholar 

  70. Prasetyo, I., Rochmadi, R., Ariyanto, T., and Yunanto, R., Indones. J. Chem., 2013, vol. 13, no. 2, pp. 95–100. https://doi.org/10.22146/IJC.21290

    Article  CAS  Google Scholar 

  71. Zhang, T., Walawender, W.P., and Fan, L.T., Bioresour. Technol., 2010, vol. 101, no. 6, pp. 1983–1991. https://doi.org/10.1016/j.carbon.2014.04.058

    Article  CAS  PubMed  Google Scholar 

  72. Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications, Jeguirim, M. and Limousy, L., Eds., Elsevier, 2019.

  73. Pajdak, A., Skoczylas, N., Dębski, A., Grzegorek, J., Maziarz, W., and Kudasik, M., J. Nat. Gas Sci. Eng., 2019, vol. 72, pp. 103003–103019. https://doi.org/10.1016/j.jngse.2019.103003

    Article  CAS  Google Scholar 

  74. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Khozina, E.V., and Grachev, V.A., Russ. Chem. Rev., 2018, vol. 87, no. 10, pp. 950–983. https://doi.org/10.1070/RCR4807

    Article  CAS  Google Scholar 

  75. Bläker, C., Muthmann, J., Pasel, C., and Bathen, D., ChemBioEng. Rev., 2019, vol. 6, no. 4, pp. 119–138. https://doi.org/10.1002/cben.201900008

    Article  CAS  Google Scholar 

  76. Biloé, S., Goetz, V., and Guillot, A., Carbon, 2002, vol. 40, no. 8, pp. 1295–1308. https://doi.org/10.1016/S0008-6223(01)00287-1

    Article  Google Scholar 

  77. MacDonald, J.A.F. and Quinn, D.F., Fuel, 1998, vol. 77, pp. 61–64. https://doi.org/10.1016/S0016-2361(97)00128-2

    Article  CAS  Google Scholar 

  78. Sun, J., Brady, T.A., Rood, M.J., Lehmann, C.M., Rostam-Abadiand, M., and Lizzio, A.A., Energy Fuels, 1997, vol. 11, pp. 316–322. https://doi.org/10.1021/ef960201h

    Article  CAS  Google Scholar 

  79. Celzard, A. and Fierro, V., Energy Fuels, 2005, vol. 19, no. 2, pp. 573–583. https://doi.org/10.1021/ef040045b

    Article  CAS  Google Scholar 

  80. Thu, K., Kim, Y.-D., Ismil, A.B., Saha, B.B., and Ng, K.C., Appl. Therm. Eng., 2014, vol. 72, pp. 200–205. https://doi.org/10.1016/j.applthermaleng.2014.04.076

    Article  CAS  Google Scholar 

  81. Kaya, S. and Chakraborty, A., Chem. Eng. J., 2018, vol. 334, pp. 780–788. https://doi.org/10.1016/j.cej.2017.10.080

    Article  CAS  Google Scholar 

  82. Biase, E.D. and Sarkisov, L., Carbon, 2013, vol. 64, pp. 262–280. https://doi.org/10.1016/j.carbon.2013.07.061

    Article  CAS  Google Scholar 

  83. Sahoo, S. and Ramgopal, M., Appl. Therm. Eng., 2015, vol. 86, pp. 127–134. https://doi.org/10.1016/j.applthermaleng.2015.04.038

    Article  CAS  Google Scholar 

  84. Men’shchikov, I., Shiryaev, A., Shkolin, A., Vysotskii, V., Khozina, E., and Fomkin, A., Korean J. Chem. Eng., 2021, vol. 38, no. 2, pp. 276–291. https://doi.org/10.1007/s11814-020-0683-2

    Article  CAS  Google Scholar 

  85. Altwala, A. and Mokaya, R., Energy Environ. Sci., 2020, vol. 13, pp. 2967–2978. https://doi.org/10.1039/D0EE01340D

    Article  CAS  Google Scholar 

  86. Cai, J.J., Qi, J.B., Yang, C.P., and Zhao, X., ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 3703–3711. https://doi.org/10.1021/am500037b

    Article  CAS  PubMed  Google Scholar 

  87. Abdulsalam, J., Mulopo, J., Bada, S., and Oboirien, B., Fuel, 2020, vol. 267, pp. 117157–117168. https://doi.org/10.1016/j.fuel.2020.117157

    Article  CAS  Google Scholar 

  88. Navarro Quirant, P., Cuadrado-Collados, C., RomeroAnaya, A.J., Silvestre Albero, J., and Escandell, M., Ind. Eng. Chem. Res., 2020, no. 13, pp. 5775–5785. https://doi.org/10.1021/acs.iecr.9b06501

    Article  CAS  Google Scholar 

  89. Mirzaei, S., Ahmadpour, A., Shahsavand, A., Rashidi, H., and Arami-Niya, A., J. Energy Storage, 2020, vol. 28, pp. 101251–101261. https://doi.org/10.1016/j.est.2020.101251

    Article  Google Scholar 

  90. Oschatz, M., Borchardt, L., Senkovska, I., Klein, N., Leistner, M., and Kaskel, S., Carbon, 2013, vol. 56, pp. 139–145. https://doi.org/10.1016/j.carbon.2012.12.084

    Article  CAS  Google Scholar 

  91. Feng, Y., Yang, W., Wang, N., Chu, W., and Liu, D., J. Anal. Appl. Pyrolysis, 2014, vol. 107, pp., 204–210. https://doi.org/10.1016/j.jaap.2014.02.021

  92. Mirzaei, S., Ahmadpour, A., Shahsavand, A., Pour, A.N., Katooli, L.L., Asil, A.G., Pouladi, B., and Arami-Niyaf, A., Appl. Surf. Sci., 2020, vol. 533, pp. 147487–147499. https://doi.org/10.1016/j.apsusc.2020.147487

    Article  CAS  Google Scholar 

  93. Aboud, M.F.A., ALOthman, Z.A., and Bagabas, A.A., Mater. Res. Express, 2021, vol. 8, pp. 025503–025514. https://doi.org/10.1088/2053-1591/abe2e0

    Article  CAS  Google Scholar 

  94. Ashourirad, B., Sekizkardes, A.K., Altarawneh, S., and El Kaderi, H.M., Chem. Mater., 2015, vol. 27, pp. 1349–1358. https://doi.org/10.1021/cm504435m

    Article  CAS  Google Scholar 

  95. Prajwal, B.P. and Ayappa, K.G., Adsorption, 2014, vol., 20, pp. 769–776. https://doi.org/10.1007/s10450-014-9620-1

  96. Byamba-Ochir, N., Shim, W.G., Balathanigaimani, M.S., and Moon, H., Appl. Energy, 2017, vol. 190, pp. 257–265. https://doi.org/10.1016/j.apenergy.2016.12.124

    Article  CAS  Google Scholar 

  97. Abdollahi, M., Lay, E.N., and Sanjari, E., Energy Procedia, 2017, vol. 141, pp. 332–338. https://doi.org/10.1016/j.egypro.2017.11.113

    Article  CAS  Google Scholar 

  98. Biloe, S., Goetz, V., and Mauran, S., Carbon, 2001, vol. 39, pp. 1653–1662. https://doi.org/10.1016/S0008-6223(00)00288-8

    Article  CAS  Google Scholar 

  99. Garcia Blanco, A.A., Alexandre de Oliveira, J.C., Lopez, R., Moreno-Pirajan, J.C., Giraldo, L., Zgrablich, G., and Sarag, K., Colloids Surf. A: Physicochem. Eng. Aspects, 2010, vol. 357, pp. 74–83. https://doi.org/10.1016/j.colsurfa.2010.01.006

    Article  CAS  Google Scholar 

  100. Ning, G., Wang, H., Zhang, X., Xu, C., Chen, G., and Gao, J., Particuology, 2013, vol. 11, pp. 415–420. https://doi.org/10.1016/j.partic.2012.10.006

    Article  CAS  Google Scholar 

  101. Zheng, Q.R., Zhu, Z.W., Feng, Y.L., and Wang, X.H., Appl. Therm. Eng., 2016, vol. 98, pp. 778–785. https://doi.org/10.1016/j.applthermaleng.2015.12.127

    Article  Google Scholar 

  102. Arami-Niya, A., Rufford, T.-E., and Zhu, Z., Carbon, 2016, vol. 103, pp. 115–124. https://doi.org/10.1016/j.carbon.2016.02.098

    Article  CAS  Google Scholar 

  103. Alonso, A., Moral-Vico, J., Markeb, A.A., Busquets-Fité, M., Komilis, D., Puntes, V., Sánchez, A., and Font, X., Total Environ., 2017, vol. 595, pp. 51–62. https://doi.org/10.1016/j.scitotenv.2017.03.229

    Article  CAS  Google Scholar 

  104. Gadipelli, S. and Guo, Z.X., Prog. Mater. Sci., 2015, vol. 69, pp. 1–60. https://doi.org/10.1016/j.pmatsci.2014.10.004

    Article  CAS  Google Scholar 

  105. Szczęśniak, B., Choma, J., and Jaroniec, M., Adv. Colloid Interface Sci., 2017, vol. 243, pp. 46–59. https://doi.org/10.1016/j.cis.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  106. Choi, P.-S., Jeong, J.-M., Choi, Y.-K., Kim, M.-S., Shin, G.-J., and Park, S.-J., Carbon Lett., 2016, vol. 17, no. 1, pp. 18–28. https://doi.org/10.5714/CL.2016.17.1.018

    Article  Google Scholar 

  107. Ma, R., Zhou, Y., Bi, H., Yang, M., Wang, J., Liu, Q., and Huang, F., Prog. Mater. Sci., 2020, vol. 113, pp. 100665–100784. https://doi.org/10.1016/j.pmatsci.2020.100665

    Article  CAS  Google Scholar 

  108. Rajabi, M., Najafi, F., Moradi, O., Mirza, B., and Thakur, V.K., Nanopolymers: Graphene and Functionalization, in Biopolymer Grafting. Synthesis and Properties, Elsevier, 2018, pp. 365–407. https://doi.org/10.1016/j.micromeso.2016.01.010

  109. Im, J.S., Jung, M.J., and Lee, Y.-S., J. Colloid Interface Sci., 2009, vol. 339, pp. 31–35. https://doi.org/10.1016/j.jcis.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  110. Othman, F.E.Ch., Yusof, N., Hasbullah, H., Jaafar, J., Ismail, A.F., and Nasri, N.Sh., Carbon Lett., 2017, vol. 24, pp. 82–89. https://doi.org/10.5714/CL.2017.24.082

    Article  Google Scholar 

  111. Ghosh, S., Sarathi, R., and Ramaprabhu, S. M, J. Colloid Interface Sci., 2019, vol. 539, pp. 245–256. https://doi.org/10.1016/j.jcis.2018.12.063

    Article  CAS  PubMed  Google Scholar 

  112. Kim, H.S., Kang, M.S., Lee, S., Lee, Y.-W., and Yoo, W.Ch., Microporous Mesoporous Mater., 2018, vol. 272, pp. 92–100. https://doi.org/10.1016/j.micromeso.2018.06.021

    Article  CAS  Google Scholar 

  113. Conte, G., Stelitano, S., Policicchio, A., Minuto, F.D., Lazzaroli, V., Galiano, F., and Agostino, R.G., J. Anal. Appl. Pyrolysis, 2020, vol. 152, pp. 104974–104985. https://doi.org/10.1016/j.jaap.2020.104974

    Article  CAS  Google Scholar 

  114. Attia, N.F., Jung, M., Park, J., Jang, H., Lee, K., and Oh, H., Chem. Eng. J., 2020, vol. 379, pp. 122367–122378. https://doi.org/10.1016/j.cej.2019.122367

    Article  CAS  Google Scholar 

  115. Lu, L., Wang, Sh., Müller, E.A., Cao, W., Zhu, Y., Lu, X., and Jackson, G., Fluid Phase Equilibria, 2014, vol. 362, pp. 227–234. https://doi.org/10.1016/j.fluid.2013.10.013

    Article  CAS  Google Scholar 

  116. Arami-Niya, A., Ruffor, T.E., and Zhu, Z., Energy Fuels, 2016, vol. 30, pp. 7298–7309. https://doi.org/10.1021/acs.energyfuels.6b00971

    Article  CAS  Google Scholar 

  117. Li, Y., Li, D., Rao, Y., Zhao, X., and Wu, M., Carbon, 2016, vol. 105, pp. 454–462. https://doi.org/10.1016/j.carbon.2016.04.036

    Article  CAS  Google Scholar 

  118. Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Strizhenov, E.M., Zaitsev, D.S., and Tvardovskii, A.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 780–785. https://doi.org/10.1134/S2070205117050136

    Article  Google Scholar 

  119. Shirazani, M.T., Bakhshi, H., Rashidi, A., and Taghizadeh, M., J. Environ. Chem. Eng., 2020, vol. 8, pp. 103910–103917. https://doi.org/10.1016/j.jece.2020.103910

    Article  CAS  Google Scholar 

  120. Antoniou, M.K., Diamanti, E.K., Enotiadis, A., Policicchio, A., Dimos, K., Ciuchi, F., Maccallini, E., Gournis, D., and Agostino, R., Microporous Mesoporous Mater., 2014, vol. 188, pp. 16–22. https://doi.org/10.1016/j.micromeso.2013.12.030

    Article  CAS  Google Scholar 

  121. Gan, G., Li, X., Fan, S., Wang, L., Qin, M., Yin, Zh., and Chen, G., Eur. J. Inorg. Chem., 2019, vol., 2019, no. 27 P. 3126–3141. https://doi.org/10.1002/ejic.201801512

  122. Gorgolis, G. and Galiotis, C., Mater., 2017, vol. 4, pp. 032001–032022. https://doi.org/10.1088/2053-1583/aa7883

    Article  CAS  Google Scholar 

  123. Arslanov, V.V., Kalinina, M.A., Ermakova, E.V., Raitman, O.A., Gorbunova, Y.G., Aksyutin, O.E., Ishkov, A.G., Grachev, V.A., and Tsivadze, A.Yu., Russ. Chem. Rev., 2019, vol. 88, no. 8, pp. 775–799. https://doi.org/10.1070/RCR4878

    Article  CAS  Google Scholar 

  124. Djeridi, W., Ben Mansour, N., Ouederni, A., Llewellyn, P.L., and Mir, L.El., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 8905–8913. https://doi.org/10.1016/j.ijhydene.2016.06.105

    Article  CAS  Google Scholar 

  125. DeArmond, D., Zhang, L., Malik, R., Reddy, K.V.K., Alvarez, N.T., Haase, M.R., Hsieh, Y.-Y., Kanakaraj, S.N., Oslin, N., Brunemann, J., Daum, J., and Shanov, V., Mater. Sci. Eng. B, 2020, vol. 254, pp. 114510–114510. https://doi.org/10.1016/j.mseb.2020.114510

    Article  CAS  Google Scholar 

  126. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, no. 5696, pp. 666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  127. Iqbal, A., Sakib, N., Iqbal, P., and Nuruzzaman, D.M., Materialia, 2020, vol. 12, pp. 100815–100837. https://doi.org/10.1016/j.micromeso.2020.110048

    Article  CAS  Google Scholar 

  128. Sharma, A., Erdenedelger, G., Jeong, H.M., and Lee, B.-K., J. Environ. Chem. Eng., 2020, vol. 8, pp. 103749–103759. https://doi.org/10.1016/j.jece.2020.103749

    Article  CAS  Google Scholar 

  129. Li, C. and Shi, G., Nanoscale, 2012, vol. 4, pp. 5549–5563. https://doi.org/10.1039/C2NR31467C

    Article  CAS  PubMed  Google Scholar 

  130. Dolbin, A.V., Khlistyuck, M.V., Esel’son, V.B., Gavrilko, V.G., Vinnikov, N.A., Basnukaeva, R.M., Maluenda, I., Maser, W.K., and Benito, A.M., Appl. Surf. Sci., 2016, vol. 361, no. 15, pp. 213–220. https://doi.org/10.1016/j.apsusc.2015.11.167

    Article  CAS  Google Scholar 

  131. Baburin, I.A., Klechikov, A., Mercier, G., Talyzin, A., and Seifert, G. H, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 6594–6599. https://doi.org/10.1016/j.ijhydene.2015.03.139

    Article  CAS  Google Scholar 

  132. Ganesan, A. and Shaijumon, M.M., Microporous Mesoporous Mater., 2016, vol. 220, pp. 21–27. https://doi.org/10.1016/j.micromeso.2015.08.021

    Article  CAS  Google Scholar 

  133. Rad, A.S., Pazoki, H., Mohseni, S., and Zareyee, D., Mater. Chem. Phys., 2016, vol. 182, pp. 32–38. https://doi.org/10.1016/j.matchemphys.2016.07.002

    Article  CAS  Google Scholar 

  134. Chen, J.J., Li, W.W., Li, X.L., and Yu, H.-Q., Environ. Sci. Technol., 2012, vol. 46, no. 18, pp. 10341–10348. https://doi.org/10.1021/es301774g

    Article  CAS  PubMed  Google Scholar 

  135. Hassani, A., Mosavian, M.T.H., Ahmadpour, A., and Farhadian, N., Comput. Theor. Chem., 2016, vol. 1084, pp. 43–50. https://doi.org/10.1016/j.comptc.2016.02.019

    Article  CAS  Google Scholar 

  136. Domán, A., Klébert, S., Madarász, J., Sáfrán, G., Wang, Y., and László, K., Nanomaterials, 2020, vol. 10, pp. 1182–1203. https://doi.org/10.3390/nano10061182

    Article  CAS  PubMed Central  Google Scholar 

  137. Szczęśniak, B., Choma, J., and Jaroniec, M., Microporous Mesoporous Mater., 2018, vol. 261, pp. 105–110. https://doi.org/10.1016/j.micromeso.2017.10.054

    Article  CAS  Google Scholar 

  138. Furuya, M. and Ichimura, K., Adv. Chem. Eng. Sci., 2013, vol. 3, no. 3, pp. 4–6. https://doi.org/10.4236/aces.2013.33A3002

    Article  CAS  Google Scholar 

  139. Zhou, L., Sun, Y., Yang, Z., and Zhou, Y., J. Colloid Interface Sci., 2005, vol. 289, pp. 347–351. https://doi.org/10.1016/j.jcis.2005.03.091

    Article  CAS  PubMed  Google Scholar 

  140. Fomkin, A.A., Shkolin, A.V., RF Patent 2714350, 2017.

Download references

Funding

The study was carried out within the State Program (Theme No. 0089-2019-0018; State Register Entry No. AAAA-A19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Knerelman.

Ethics declarations

I.V. Sedov, a co-author, is a Deputy Chief Editor at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knerelman, E.I., Karozina, Y.A., Shunina, I.G. et al. Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 1 (A Review). Pet. Chem. 62, 561–582 (2022). https://doi.org/10.1134/S0965544122040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122040077

Keywords:

Navigation