Skip to main content
Log in

Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In cascaded H-bridge (CHB) converters, each of the H-bridge carriers of the traditional modulated model predictive control (MPC) is synchronized. Therefore, the steady-state and transient performances are weak in high power applications that exhibit a low switching frequency. The traditional observer-based MPC uses estimation strategies to replace the prediction model under parametric uncertainties. However, there is no effective approach for the uncertainties in the open-loop optimal control law, which leads to a marked decrease in control performance in the presence of high uncertainties. For high power CHB converters, a robust closed-loop MPC using a linear matrix inequality is designed in this study to achieve robust current tracking. The augmented state is asymptotically decreased by the state feedback control law in the terminal elliptical invariant sets. Thus, the worst performance of the model mismatch is minimized. This study also proposes a phase-shifted modulated MPC to improve both the steady-state and transient performances. The voltage of the CHB converter is considered as a whole to implement the proposed method. The optimal duty cycle of each H-bridge, based on the piecewise strategy and voltage-second balanced rule, is implemented by a phase-shifted modulator. Better control performance with shorter response delays, faster tracking speed, and lower overshoot are achieved with a similar switching frequency. The effectiveness of the proposed method is verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. De Tommasi, G., Mele, A., Luo, Z. P., Pironti, A., Xiao, B. J.: On plasma vertical stabilization at EAST tokamak. 2017 IEEE Conf. CCTA, 511–516 (2017)

  2. Huang, H.H., Ming, Y., Wang, H.X.: Application of a current and voltage mixed control mode for the new fast control power supply at EAST. Plasma Sci. Technol 16(4), 420–423 (2014)

    Article  Google Scholar 

  3. Kouro, S., Perez, M.A., Rodriguez, J., Llor, A.M., Young, H.A.: Model predictive control: MPC’s role in the evolution of power electronics. IEEE Ind. Elec. Magazine. 9(4), 8–21 (2015)

    Article  Google Scholar 

  4. Vazquez, S., et al.: Model predictive control: a review of its applications in power electronics. IEEE Ind. Elec. Magazine. 8(1), 16–31 (2014)

    Article  Google Scholar 

  5. Nasiri, M.R., Farhangi, S., Rodríguez, J.: Model predictive control of a multilevel CHB STATCOM in wind farm application using diophantine equations. IEEE Trans. Ind. Electron. 66(2), 1213–1223 (2019)

    Article  Google Scholar 

  6. Zhang, Y., Wu, X., Yuan, X.: A simplified branch and bound approach for model predictive control of multilevel cascaded H-Bridge STATCOM. IEEE Trans. Ind. Electron. 64(10), 7634–7644 (2017)

    Article  Google Scholar 

  7. Karamanakos, P., Pavlou, K., Manias, S.: An enumeration-based model predictive control strategy for the cascaded H-Bridge multilevel rectifier. IEEE Trans. Ind. Electron. 61(7), 3480–3489 (2014)

    Article  Google Scholar 

  8. Chai, M., Gorla, N.B.Y., Panda, S.K.: Fault detection and localization for cascaded H-Bridge multilevel converter with model predictive control. IEEE Trans. Power Electron. 35(10), 10109–10120 (2020)

    Article  Google Scholar 

  9. Baier, C.R., Ramirez, R.O., Marciel, E.I., Hernández, J.C., Melín, P.E., Espinosa, E.E.: FCS-MPC without steady-state error applied to a grid-connected cascaded H-bridge multilevel inverter. IEEE Trans. Power Electron. 36(10), 11785–11799 (2021)

    Article  Google Scholar 

  10. Baidya, R., Aguilera, R.P., Acuña, P., Vazquez, S., Mouton, Hd.T.: Multistep model predictive control for cascaded H-Bridge inverters: formulation and analysis. IEEE Trans. Power Electron. 33(1), 876–886 (2018)

    Article  Google Scholar 

  11. Wang, Y., Liu, F., Chen, S., Shen, G., Wang, Q.-G.: Prediction errors analysis and correction on FCS-MPC for the cascaded H-bridge multilevel inverter. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3104594

    Article  Google Scholar 

  12. Aguilera, R.P., et al.: Predictive control of cascaded H-Bridge converters under unbalanced power generation. IEEE Trans. Ind. Electron. 64(1), 4–13 (2017)

    Article  MathSciNet  Google Scholar 

  13. Zhang, Y., Xie, W., Li, Z., Zhang, Y.: Model predictive direct power control of a PWM rectifier with duty cycle optimization. IEEE Trans. Power Electron. 28(11), 5343–5351 (2013)

    Article  Google Scholar 

  14. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Del. 33(5), 2115–2124 (2018)

    Article  Google Scholar 

  15. Tarisciotti, L., Zanchetta, P., Watson, A., Bifaretti, S., Clare, J.C.: Modulated model predictive control for a seven-level cascaded H-Bridge back-to-back converter. IEEE Trans. Ind. Electron. 61(10), 5375–5383 (2014)

    Article  Google Scholar 

  16. Ma, F., He, Z., Xu, Q., Luo, A., Zhou, L., Li, M.: Multilevel power conditioner and its model predictive control for railway traction system. IEEE Trans. Ind. Electron. 63(11), 7275–7285 (2016)

    Article  Google Scholar 

  17. Sahoo, S.K., Bhattacharya, T.: Phase-shifted carrier-based synchronized sinusoidal PWM techniques for a cascaded H-bridge multilevel inverter. IEEE Trans. Power Electron. 33(1), 513–524 (2018)

    Article  Google Scholar 

  18. Townsend, C.D., Summers, T.J., Betz, R.E.: Phase-shifted carrier modulation techniques for cascaded H-bridge multilevel converters. IEEE Trans. Ind. Electron. 62(11), 6684–6696 (2015)

    Article  Google Scholar 

  19. Marquez, A., et al.: Variable-angle phase-shifted PWM for multilevel three-cell cascaded H-Bridge converters. IEEE Trans. Ind. Electron. 64(5), 3619–3628 (2017)

    Article  Google Scholar 

  20. Alcaide, A.M., et al.: Variable-angle PS-PWM technique for multilevel cascaded H-Bridge converters with large number of power cells. IEEE Trans. Ind. Electron. 68(8), 6773–6783 (2021)

    Article  Google Scholar 

  21. Aguilera, R.P., Acuna, P., Su, X., Lezana, P., McGrath, B.: Sequential phase-shifted model predictive control for multicell power converters. Proc. IEEE Southern Power Electronics, 1–6 (2017)

  22. Zhou, D., Yang, S., Tang, Y.: Model-predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation. IEEE Trans. Ind. Electron. 66(6), 4368–4378 (2019)

    Article  Google Scholar 

  23. Cuzmar, R.H., Pereda, J., Aguilera, R.P.: Phase-shifted model predictive control to achieve power balance of CHB converters for large-scale photovoltaic integration. IEEE Trans. Ind. Electron. 68(10), 9619–9629 (2021)

    Article  Google Scholar 

  24. Xiao, Q., et al.: Modulated model predictive control for multilevel cascaded H-Bridge converter based STATCOM. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3056953

    Article  Google Scholar 

  25. Brosch, A., Hanke, S., Wallscheid, O., Böcker, J.: Data-Driven recursive least squares estimation for model predictive current control of permanent magnet synchronous motors. IEEE Trans. Power Electron. 36(2), 2179–2190 (2021)

    Article  Google Scholar 

  26. Saeed, M.S.R., Song, W., Yu, B.: Robustness improvement of deadbeat model predictive control for five-phase PMSM drives. 2020 IEEE Conf. on Industrial Electronics and Applications, 1336–1341 (2020)

  27. Song, Z.Y., Hou, J., Lin, X.F., Sun, J.: Parameter identification and maximum power estimation of battery/supercapacitor hybrid energy storage system based on Cramer-Rao bound analysis. IEEE Trans. Power Electron. 34(5), 4831–4843 (2019)

    Article  Google Scholar 

  28. Ghanes, M., Trabelsi, M., Abu-Rub, H., Ben-Brahim, L.: Robust adaptive observer-based model predictive control for multilevel flying capacitors inverter. IEEE Trans. Ind. Electron. 63(12), 7876–7886 (2016)

    Article  Google Scholar 

  29. Wang, G., Wang, Y., Xu, J., Zhao, N., Xu, D.: Weight-transducerless rollback mitigation adopting enhanced MPC with extended state observer for direct-drive elevators. IEEE Trans. Power Electron. 31(6), 4440–4451 (2016)

    Article  Google Scholar 

  30. Mousavi, M.S., Davari, S.A., Nekoukar, V., Garcia, C., Rodriguez, J.: A robust torque and flux prediction model by a modified disturbance rejection method for finite-set model-predictive control of induction motor. IEEE Trans. Power Electron. 36(8), 9322–9333 (2021)

    Article  Google Scholar 

  31. Guo, L., Jin, N., Li, Y., Luo, K.: A model predictive control method for grid-connected power converters without AC voltage sensors. IEEE Trans. Ind. Electron. 68(2), 1299–1310 (2021)

    Article  Google Scholar 

  32. Kim, S., Choi, D., Lee, K., Lee, Y.I.: Offset-free model predictive control for the power control of three-phase AC/DC converters. IEEE Trans. Ind. Electron. 62(11), 7114–7126 (2015)

    Article  Google Scholar 

  33. Liu, X., Jiang, D., Lee, K.Y.: Quasi-min-max Fuzzy MPC of UTSG water level based on off-line invariant set. IEEE Trans. Nucl. Sci. 62(5), 2266–2272 (2015)

    Article  Google Scholar 

  34. Peng, H., Wang, W., An, Q., Xiang, C., Li, L.: Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Vehicular Technol. 69(6), 6053–6066 (2020)

    Article  Google Scholar 

  35. Ahmed, A.A., Koh, B.K., Park, H.S., Lee, K., Lee, Y.I.: Finite-control set model predictive control method for torque control of induction motors using a state tracking cost index. IEEE Trans. Ind. Electron. 64(3), 1916–1928 (2017)

    Article  Google Scholar 

  36. Cheng, S., Li, L., Chen, X., Wu, J., Wang, H.D.: Model predictive control based path tracking controller of autonomous vehicle considering parametric uncertainties and velocity-varying. IEEE Trans. Ind. Electron. 68(9), 8698–8707 (2021)

    Article  Google Scholar 

Download references

Funding

This work is funded by National Natural Science Foundation of China (11275056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bichen Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Huang, H. & Wang, H. Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality. J. Power Electron. 22, 1496–1507 (2022). https://doi.org/10.1007/s43236-022-00459-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00459-1

Keywords

Navigation