Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis

Abstract

(R,S)-ketamine (ketamine) and its enantiomer (S)-ketamine (esketamine) can produce rapid and substantial antidepressant effects. However, individual response to ketamine/esketamine is variable, and there are no well-accepted methods to differentiate persons who are more likely to benefit. Numerous potential peripheral biomarkers have been reported, but their current utility is unclear. We conducted a systematic review/meta-analysis examining the association between baseline levels and longitudinal changes in blood-based biomarkers, and response to ketamine/esketamine. Of the 5611 citations identified, 56 manuscripts were included (N = 2801 participants), and 26 were compatible with meta-analytical calculations. Random-effect models were used, and effect sizes were reported as standardized mean differences (SMD). Our assessments revealed that more than 460 individual biomarkers were examined. Frequently studied groups included neurotrophic factors (n = 15), levels of ketamine and ketamine metabolites (n = 13), and inflammatory markers (n = 12). There were no consistent associations between baseline levels of blood-based biomarkers, and response to ketamine. However, in a longitudinal analysis, ketamine responders had statistically significant increases in brain-derived neurotrophic factor (BDNF) when compared to pre-treatment levels (SMD [95% CI] = 0.26 [0.03, 0.48], p = 0.02), whereas non-responders showed no significant changes in BDNF levels (SMD [95% CI] = 0.05 [−0.19, 0.28], p = 0.70). There was no consistent evidence to support any additional longitudinal biomarkers. Findings were inconclusive for esketamine due to the small number of studies (n = 2). Despite a diverse and substantial literature, there is limited evidence that blood-based biomarkers are associated with response to ketamine, and no current evidence of clinical utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow diagram of systematic searches for studies assessing blood-based biomarkers of antidepressant response to ketamine and esketamine.
Fig. 2: Meta-analytical calculations comparing post-treatment and baseline blood levels of brain-derived neurotrophic factor (pg/ml) in responders and non-responders to ketamine (n = 331, 11 studies).
Fig. 3: Meta-analytical calculations comparing the blood levels of ketamine (pg/ml) and norketamine (pg/ml) in responders and non-responders to ketamine (n = 286, 9 studies).
Fig. 4: Meta-analytical calculations comparing post-treatment and baseline blood levels of pro-inflammatory markers in responders and non-responders to ketamine.

Similar content being viewed by others

References

  1. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.

    PubMed  Google Scholar 

  2. Rush AJ, Trivedi MH, Stewart JW, Nierenberg AA, Fava M, Kurian BT, et al. Combining medications to enhance depression outcomes (CO-MED): acute and long-term outcomes of a single-blind randomized study. Am J Psychiatry. 2011;168:689–701.

    PubMed  Google Scholar 

  3. Thase ME, Mahableshwarkar AR, Dragheim M, Loft H, Vieta E. A meta-analysis of randomized, placebo-controlled trials of vortioxetine for the treatment of major depressive disorder in adults. Eur Neuropsychopharmacol. 2016;26:979–93.

    CAS  PubMed  Google Scholar 

  4. Patel K, Allen S, Haque MN, Angelescu I, Baumeister D, Tracy DK. Bupropion: a systematic review and meta-analysis of effectiveness as an antidepressant. Therapeutic Adv Psychopharmacol. 2016;6:99–144.

    CAS  Google Scholar 

  5. Baldessarini RJ, Vázquez GH, Tondo L. Bipolar depression: a major unsolved challenge. Int J bipolar Disord. 2020;8:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Frazer A, Benmansour S. Delayed pharmacological effects of antidepressants. Mol Psychiatry. 2002;7:S23–8.

    CAS  PubMed  Google Scholar 

  7. Machado-Vieira R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate CA Jr. Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depression. J Clin Psychiatry. 2008;69:946.

    PubMed  PubMed Central  Google Scholar 

  8. López-Muñoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009;15:1563–86.

    PubMed  Google Scholar 

  9. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Focus. 2018;16:420–9.

    PubMed  PubMed Central  Google Scholar 

  10. Riggs LM, Gould TD. Ketamine and the future of rapid-acting antidepressants. Annu Rev Clin Psychol. 2021;17:207–31.

  11. Kryst J, Kawalec P, Mitoraj AM, Pilc A, Lasoń W, Brzostek T. Efficacy of single and repeated administration of ketamine in unipolar and bipolar depression: a meta-analysis of randomized clinical trials. Pharmacol Rep. 2020;72:543–62.

  12. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70:621–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li L, Vlisides PE. Ketamine: 50 years of modulating the mind. Front Hum Neurosci. 2016;10:612.

    PubMed  PubMed Central  Google Scholar 

  14. Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: a paradigm shift for depression research and treatment. Neuron. 2019;101:774–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gould TD, Zarate CA Jr, Thompson SM. Molecular pharmacology and neurobiology of rapid-acting antidepressants. Annu Rev Pharmacol Toxicol. 2019;59:213–36.

    CAS  PubMed  Google Scholar 

  16. Molero P, Ramos-Quiroga J, Martin-Santos R, Calvo-Sánchez E, Gutiérrez-Rojas L, Meana J. Antidepressant efficacy and tolerability of ketamine and esketamine: a critical review. CNS Drugs. 2018;32:411–20.

    CAS  PubMed  Google Scholar 

  17. Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC, et al. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2018;75:139–48.

    PubMed  Google Scholar 

  18. Canuso CM, Singh JB, Fedgchin M, Alphs L, Lane R, Lim P, et al. Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study. Am J Psychiatry. 2018;175:620–30.

    PubMed  Google Scholar 

  19. Kim J, Farchione T, Potter A, Chen Q, Temple R. Esketamine for treatment-resistant depression-first FDA-approved antidepressant in a new class. N. Engl J Med. 2019;381:1–4.

    PubMed  Google Scholar 

  20. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013;170:1134–42.

    PubMed  PubMed Central  Google Scholar 

  21. Grunebaum MF, Ellis SP, Keilp JG, Moitra VK, Cooper TB, Marver JE, et al. Ketamine versus midazolam in bipolar depression with suicidal thoughts: A pilot midazolam‐controlled randomized clinical trial. Bipolar Disord. 2017;19:176–83.

    CAS  PubMed  Google Scholar 

  22. Grunebaum MF, Galfalvy HC, Choo T-H, Keilp JG, Moitra VK, Parris MS, et al. Ketamine for rapid reduction of suicidal thoughts in major depression: a midazolam-controlled randomized clinical trial. Am J Psychiatry. 2018;175:327–35.

    PubMed  Google Scholar 

  23. Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, et al. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am J Psychiatry. 2019;176:401–9.

    PubMed  Google Scholar 

  24. Correia-Melo FS, Leal GC, Vieira F, Jesus-Nunes AP, Mello RP, Magnavita G, et al. Efficacy and safety of adjunctive therapy using esketamine or racemic ketamine for adult treatment-resistant depression: A randomized, double-blind, non-inferiority study. J Affect Disord. 2020;264:527–34.

    CAS  PubMed  Google Scholar 

  25. Su T-P, Chen M-H, Li C-T, Lin W-C, Hong C-J, Gueorguieva R, et al. Dose-related effects of adjunctive ketamine in Taiwanese patients with treatment-resistant depression. Neuropsychopharmacology. 2017;42:2482–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71:939–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcantoni WS, Akoumba BS, Wassef M, Mayrand J, Lai H, Richard-Devantoy S, et al. A systematic review and meta-analysis of the efficacy of intravenous ketamine infusion for treatment resistant depression: January 2009–January 2019. J Affect Disord. 2020;277:831–41.

  28. Bzdok D, Varoquaux G, Steyerberg EW. Prediction, not association, paves the road to precision medicine. JAMA Psychiatry. 2021;78:127–8.

  29. Rong C, Park C, Rosenblat JD, Subramaniapillai M, Zuckerman H, Fus D, et al. Predictors of response to ketamine in treatment resistant major depressive disorder and bipolar disorder. Int J Environ Res Public Health. 2018;15:771.

    PubMed  PubMed Central  Google Scholar 

  30. Park M, Newman LE, Gold PW, Luckenbaugh DA, Yuan P, Machado-Vieira R, et al. Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment-resistant depression. J Psychiatr Res. 2017;84:113–8.

    PubMed  Google Scholar 

  31. Kadriu B, Ballard ED, Henter ID, Murata S, Gerlus N, Zarate CA Jr. Neurobiological biomarkers of response to ketamine. Adv Pharmacol (San Diego, Calif). 2020;89:195–235.

    CAS  Google Scholar 

  32. Arnow BA, Blasey C, Williams LM, Palmer DM, Rekshan W, Schatzberg AF, et al. Depression subtypes in predicting antidepressant response: a report from the iSPOT-D trial. Am J Psychiatry. 2015;172:743–50.

    PubMed  Google Scholar 

  33. Saveanu R, Etkin A, Duchemin A-M, Goldstein-Piekarski A, Gyurak A, Debattista C, et al. The international Study to Predict Optimized Treatment in Depression (iSPOT-D): outcomes from the acute phase of antidepressant treatment. J Psychiatr Res. 2015;61:1–12.

    PubMed  Google Scholar 

  34. Chan HN, Rush AJ, Nierenberg AA, Trivedi M, Wisniewski SR, Balasubramani G, et al. Correlates and outcomes of depressed out-patients with greater and fewer anxious symptoms: a CO-MED report. Int J Neuropsychopharmacol. 2012;15:1387–99.

    CAS  PubMed  Google Scholar 

  35. Medeiros GC, Prueitt WL, Rush AJ, Minhajuddin A, Czysz AH, Patel SS, et al. Impact of childhood maltreatment on outcomes of antidepressant medication in chronic and/or recurrent depression. J Affect Disord. 2021;291:39–45.

  36. Perna G, Alciati A, Daccò S, Grassi M, Caldirola D. Personalized psychiatry and depression: the role of sociodemographic and clinical variables. Psychiatry Investig. 2020;17:193.

    PubMed  PubMed Central  Google Scholar 

  37. Niciu MJ, Ionescu DALDF, Guevara S, Machado-Vieira R, Richards EM, Brutsche NE, et al. Clinical predictors of ketamine response in treatment-resistant major depression. J Clin Psychiatry. 2014;75:417–23.

    Google Scholar 

  38. O’Brien B, Lijffijt M, Lee J, Kim YS, Wells A, Murphy N, et al. Distinct trajectories of antidepressant response to intravenous ketamine. J Affect Disord. 2021;286:320–9.

    PubMed  Google Scholar 

  39. Leuchter AF, Cook IA, Hamilton SP, Narr KL, Toga A, Hunter AM, et al. Biomarkers to predict antidepressant response. Curr Psychiatry Rep. 2010;12:553–62.

    PubMed  PubMed Central  Google Scholar 

  40. Gadad BS, Jha MK, Czysz A, Furman JL, Mayes TL, Emslie MP, et al. Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J Affect Disord. 2018;233:3–14.

    CAS  PubMed  Google Scholar 

  41. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US) www.ncbi.nlm.nih.gov/books/NBK326791/ (2016).

  42. Zarate CA Jr, Mathews DC, Furey ML. Human biomarkers of rapid antidepressant effects. Biol Psychiatry. 2013;73:1142–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Niciu MJ, Luckenbaugh DA, Ionescu DF, Guevara S, Machado-Vieira R, Richards EM, et al. Clinical predictors of ketamine response in treatment-resistant major depression. J Clin Psychiatry. 2014;75:e417.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Henriksen K, O’Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, et al. The future of blood-based biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 2014;10:115–31.

    Google Scholar 

  45. O’Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, et al. Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimer’s Dement. 2017;13:45–58.

    Google Scholar 

  46. Yang J-J, Wang N, Yang C, Shi J-Y, Yu H-Y, Hashimoto K. Serum interleukin-6 is a predictive biomarker for ketamine’s antidepressant effect in treatment-resistant patients with major depression. Biol Psychiatry. 2015;77:e19–e20.

    CAS  PubMed  Google Scholar 

  47. Kiraly D, Horn S, Van Dam N, Costi S, Schwartz J, Kim-Schulze S, et al. Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry. 2017;7:e1065–e.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen M-H, Li C-T, Lin W-C, Hong C-J, Tu P-C, Bai Y-M, et al. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: a randomized, double-blind control study. Psychiatry Res. 2018;269:207–11.

    CAS  PubMed  Google Scholar 

  49. Zhan Y, Zhou Y, Zheng W, Liu W, Wang C, Lan X, et al. Alterations of multiple peripheral inflammatory cytokine levels after repeated ketamine infusions in major depressive disorder. Transl Psychiatry. 2020;10:1–9.

    Google Scholar 

  50. Allen AP, Naughton M, Dowling J, Walsh A, Ismail F, Shorten G, et al. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: a comparison of ketamine and ECT. J Affect Disord. 2015;186:306–11.

    CAS  PubMed  Google Scholar 

  51. Ortiz R, Niciu MJ, Lukkahati N, Saligan LN, Nugent AC, Luckenbaugh DA, et al. Shank3 as a potential biomarker of antidepressant response to ketamine and its neural correlates in bipolar depression. J Affect Disord. 2015;172:307–11.

    CAS  PubMed  Google Scholar 

  52. Moaddel R, Shardell M, Khadeer M, Lovett J, Kadriu B, Ravichandran S, et al. Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology. 2018;235:3017–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moaddel R, Luckenbaugh DA, Xie Y, Villaseñor A, Brutsche NE, Machado-Vieira R, et al. D-serine plasma concentration is a potential biomarker of (R, S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology. 2015;232:399–409.

    CAS  PubMed  Google Scholar 

  54. Verdonk F, Petit A-C, Abdel-Ahad P, Vinckier F, Jouvion G, de Maricourt P, et al. Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain, Behav, Immun. 2019;81:361–73.

    CAS  PubMed  Google Scholar 

  55. Machado-Vieira R, Gold P, Luckenbaugh D, Ballard E, Richards E, Henter I, et al. The role of adipokines in the rapid antidepressant effects of ketamine. Mol Psychiatry. 2017;22:127–33.

    CAS  PubMed  Google Scholar 

  56. Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N, et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry. 2012;72:e27–e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. PROSPERO IPRoSR-. National Institute for Health Research. Centre for Reviews and Dissemination - University of York. 2021.

  58. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    PubMed  PubMed Central  Google Scholar 

  59. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org.

  60. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280–6.

    PubMed  Google Scholar 

  61. Drevon D, Fursa SR, Malcolm AL. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif. 2017;41:323–39.

    PubMed  Google Scholar 

  62. Cohen J. Statistical power analysis for the behavioral sciences: Academic press; 2013.

  63. Higgins JP, White IR, Anzures‐Cabrera J. Meta‐analysis of skewed data: combining results reported on log‐transformed or raw scales. Stat Med. 2008;27:6072–92.

    PubMed  PubMed Central  Google Scholar 

  64. Weir CJ, Butcher I, Assi V, Lewis SC, Murray GD, Langhorne P, et al. Dealing with missing standard deviation and mean values in meta-analysis of continuous outcomes: a systematic review. BMC Med Res Methodol. 2018;18:1–14.

    Google Scholar 

  65. Deeks JJ, Higgins JP, Altman DG. Cochrane Statistical Methods Group. Analyzing data and undertaking meta‐analyses. Cochrane handbook for systematic reviews of interventions. 2019;23:241–84.

  66. Li QS, Wajs E, Ochs-Ross R, Singh J, Drevets WC. Genome-wide association study and polygenic risk score analysis of esketamine treatment response. Sci Rep. 2020;10:1–9.

    Google Scholar 

  67. Rotroff D, Corum D, Motsinger-Reif A, Fiehn O, Bottrel N, Drevets W, et al. Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants. Transl Psychiatry. 2016;6:e894–e.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Deyama S, Duman RS. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav. 2020;188:172837.

    PubMed  Google Scholar 

  69. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P-F, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Machado-Vieira R, Yuan P, Brutsche N, DiazGranados N, Luckenbaugh D, Manji HK, et al. Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate antagonist. J Clin Psychiatry. 2009;70:1662.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Duncan WC Jr, Sarasso S, Ferrarelli F, Selter J, Riedner BA, Hejazi NS, et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol. 2013;16:301–11.

    CAS  PubMed  Google Scholar 

  74. Rybakowski JK, Permoda‐Osip A, Skibinska M, Adamski R, Bartkowska‐Sniatkowska A. Single ketamine infusion in bipolar depression resistant to antidepressants: are neurotrophins involved? Hum Psychopharmacol: Clin Exp. 2013;28:87–90.

    CAS  Google Scholar 

  75. Haile C, Murrough J, Iosifescu D, Chang L, Al Jurdi R, Foulkes A, et al. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17:331–6.

    CAS  PubMed  Google Scholar 

  76. Permoda-Osip A, Dorszewska J, Bartkowska-Sniatkowska A, Chlopocka-Wozniak M, Rybakowski J. Vitamin B12 level may be related to the efficacy of single ketamine infusion in bipolar depression. Pharmacopsychiatry. 2013;46:227–8.

    CAS  PubMed  Google Scholar 

  77. McGrory CL, Ryan KM, Gallagher B, McLoughlin DM. Vascular endothelial growth factor and pigment epithelial-derived factor in the peripheral response to ketamine. J Affect Disord. 2020;273:380–3.

    CAS  PubMed  Google Scholar 

  78. Jiang H, Veldman ER, Tiger M, Ekman C-J, Lundberg J, Svenningsson P. Plasma levels of brain-derived neurotrophic factor and S100B in relation to antidepressant response to ketamine. Front Neurosci. 2021:866.

  79. Kang MJ, Vazquez G. A Pilot Study: An Open-Label Biomarker Development of Ketamine for Unipolar Refractory Depression. Biol Psychiatry. 2021;89:S92–3.

  80. Medeiros GC, Greenstein D, Kadriu B, Yuan P, Park LT, Gould TD, et al. Treatment of depression with ketamine does not change plasma levels of brain-derived neurotrophic factor or vascular endothelial growth factor. J Affect Disord. 2020;280:136–9.

    PubMed  PubMed Central  Google Scholar 

  81. Zheng W, Zhou Y-L, Wang C-Y, Lan X-F, Zhang B, Zhou S-M, et al. Plasma BDNF concentrations and the antidepressant effects of six ketamine infusions in unipolar and bipolar depression. PeerJ. 2021;9:e10989.

    PubMed  PubMed Central  Google Scholar 

  82. Zheng W, Zhou Y-L, Wang C-Y, Lan X-F, Zhang B, Zhou S-M, et al. Association of plasma VEGF levels and the antidepressant effects of ketamine in patients with depression. Therapeutic Advances in. Psychopharmacology. 2021;11:20451253211014320.

    Google Scholar 

  83. Highland JN, Zanos P, Riggs LM, Georgiou P, Clark SM, Morris PJ, et al. Hydroxynorketamines: pharmacology and potential therapeutic applications. Pharmacol Rev. 2021;73:763–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67:793–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ibrahim L, DiazGranados N, Franco-Chaves J, Brutsche N, Henter ID, Kronstein P, et al. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology. 2012;37:1526–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zarate CA Jr, Brutsche N, Laje G, Luckenbaugh DA, Venkata SLV, Ramamoorthy A, et al. Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry. 2012;72:331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sos P, Klirova M, Novak T, Kohutova B, Horacek J, Palenicek T. Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuroendocrinol Lett. 2013;34:101–7.

    Google Scholar 

  88. Lenze EJ, Farber NB, Kharasch E, Schweiger J, Yingling M, Olney J, et al. Ninety-six hour ketamine infusion with co-administered clonidine for treatment-resistant depression: a pilot randomised controlled trial. World J Biol Psychiatry. 2016;17:230–8.

    PubMed  PubMed Central  Google Scholar 

  89. Grunebaum MF, Galfalvy HC, Choo T-H, Parris MS, Burke AK, Suckow RF, et al. Ketamine metabolite pilot study in a suicidal depression trial. J Psychiatr Res. 2019;117:129–34.

    PubMed  PubMed Central  Google Scholar 

  90. Andrashko V, Novak T, Brunovsky M, Klirova M, Sos P, Horacek J. The antidepressant effect of ketamine is dampened by concomitant benzodiazepine medication. Front Psychiatry. 2020;11:844.

    PubMed  PubMed Central  Google Scholar 

  91. Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, et al. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology. 2020:1–7.

  92. Milak MS, Rashid R, Dong Z, Kegeles LS, Grunebaum MF, Ogden RT, et al. Assessment of relationship of ketamine dose with magnetic resonance spectroscopy of Glx and GABA responses in adults with major depression: a randomized clinical trial. JAMA Netw Open. 2020;3:e2013211–e.

    PubMed  PubMed Central  Google Scholar 

  93. Chen M-H, Kao C-F, Tsai S-J, Li C-T, Lin W-C, Hong C-J, et al. Treatment response to low-dose ketamine infusion for treatment-resistant depression: A gene-based genome-wide association study. Genomics. 2021;113:507–14.

    CAS  PubMed  Google Scholar 

  94. Siegel JS, Palanca BJ, Ances BM, Kharasch ED, Schweiger JA, Yingling MD, et al. Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression. Psychopharmacology. 2021;238:1157–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Eldufani J, Nekoui A, Blaise G. Nonanesthetic effects of ketamine: a review article. Am J Med. 2018;131:1418–24.

    CAS  PubMed  Google Scholar 

  96. Tan S, Wang Y, Chen K, Long Z, Zou J. Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice. Biol Pharm Bull. 2017;40:1260–7.

    CAS  PubMed  Google Scholar 

  97. Zhou Y-L, Wu F-C, Wang C-Y, Zheng W, Lan X-F, Deng X-R, et al. Relationship between hippocampal volume and inflammatory markers following six infusions of ketamine in major depressive disorder. J Affect Disord. 2020;276:608–15.

    CAS  PubMed  Google Scholar 

  98. Permoda-Osip A, Skibinska M, Bartkowska-Sniatkowska A, Kliwicki S, Chlopocka-Wozniak M, Rybakowski JK. Factors connected with efficacy of single ketamine infusion in bipolar depression. Psychiatr Pol. 2014;48:35–47.

    PubMed  Google Scholar 

  99. Allen AP, Naughton M, Dowling J, Walsh A, O’Shea R, Shorten G, et al. Kynurenine pathway metabolism and the neurobiology of treatment-resistant depression: comparison of multiple ketamine infusions and electroconvulsive therapy. J Psychiatr Res. 2018;100:24–32.

    CAS  PubMed  Google Scholar 

  100. Kadriu B, Farmer CA, Yuan P, Park LT, Deng Z-D, Moaddel R, et al. The kynurenine pathway and bipolar disorder: intersection of the monoaminergic and glutamatergic systems and immune response. Mol Psychiatr. 2019:1–11.

  101. Ryan K, Gallagher B. Abstract# 4393 Analysis of mRNA levels of inflammatory mediators in samples from the KARMA-dep (Ketamine as an adjunctive therapy for major depression) Trial. Brain, Behav, Immun. 2019;81:52.

    Google Scholar 

  102. Kruse JL, Vasavada MM, Olmstead R, Hellemann G, Wade B, Breen EC, et al. Depression treatment response to ketamine: sex-specific role of interleukin-8, but not other inflammatory markers. Transl psychiatry. 2021;11:1–9.

    Google Scholar 

  103. Medeiros GC, Rush AJ, Jha M, Carmody T, Furman JL, Czysz AH, et al. Positive and negative valence systems in major depression have distinct clinical features, response to antidepressants, and relationships with immunomarkers. Depress Anxiety. 2020;37:771–83.

  104. Zhou Y, Zheng W, Liu W, Wang C, Zhan Y, Li H, et al. Antidepressant effect of repeated ketamine administration on kynurenine pathway metabolites in patients with unipolar and bipolar depression. Brain, Behav, Immun. 2018;74:205–12.

    CAS  PubMed  Google Scholar 

  105. Hunt BC, e Cordeiro TM, Robert S, de Dios C, Leal VAC, Soares JC, et al. Effect of mmune activation on the kynurenine pathway and depression symptoms–a systematic review and meta-analysis. Neurosci Biobehav Rev. 2020.

  106. Zhou Y, Liu W, Zheng W, Wang C, Zhan Y, Lan X, et al. Predictors of response to repeated ketamine infusions in depression with suicidal ideation: An ROC curve analysis. J Affect Disord. 2020;264:263–71.

    CAS  PubMed  Google Scholar 

  107. Villaseñor A, Ramamoorthy A, Silva dos Santos M, Lorenzo M, Laje G, Zarate C Jr, et al. A pilot study of plasma metabolomic patterns from patients treated with ketamine for bipolar depression: evidence for a response‐related difference in mitochondrial networks. Br J Pharmacol. 2014;171:2230–42.

    PubMed  PubMed Central  Google Scholar 

  108. Guo W, Machado-Vieira R, Mathew S, Murrough JW, Charney DS, Grunebaum M, et al. Exploratory genome-wide association analysis of response to ketamine and a polygenic analysis of response to scopolamine in depression. Transl Psychiatry. 2018;8:1–8.

    Google Scholar 

  109. Bao Z, Zhao X, Li J, Zhang G, Wu H, Ning Y, et al. Prediction of repeated-dose intravenous ketamine response in major depressive disorder using the GWAS-based machine learning approach. J Psychiatr Res. 2021;138:284–90.

    PubMed  Google Scholar 

  110. Grunebaum MF, Galfalvy HC, Liu J, Huang Y-Y, Marcott S, Burke AK, et al. Opioid receptor μ-1 and ketamine effects in a suicidal depression trial: a post hoc exploration. J Clin Psychopharmacol. 2020;40:420–2.

    PubMed  PubMed Central  Google Scholar 

  111. Salvadore G, van der Veen JW, Zhang Y, Marenco S, Machado-Vieira R, Baumann J, et al. An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression. Int J Neuropsychopharmacol. 2012;15:1063–72.

    CAS  PubMed  Google Scholar 

  112. Parker G, Brotchie H. Mood effects of the amino acids tryptophan and tyrosine: ‘Food for Thought’III. Acta Psychiatr Scandinavica. 2011;124:417–26.

    CAS  Google Scholar 

  113. Lundin N, Niciu M, Luckenbaugh D, Ionescu D, Richards E, Voort JV, et al. Baseline vitamin B12 and folate levels do not predict improvement in depression after a single infusion of ketamine. Pharmacopsychiatry. 2014;47:141.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Słupski J, Cubała WJ, Górska N, Słupska A, Gałuszko-Węgielnik M. Copper concentrations in ketamine therapy for treatment-resistant depression. Brain Sci. 2020;10:971.

    PubMed  PubMed Central  Google Scholar 

  115. Górska N, Cubała WJ, Słupski J, Wiglusz MS, Gałuszko-Węgielnik M, Kawka M, et al. Magnesium in ketamine administration in treatment-resistant depression. Pharmaceuticals. 2021;14:430.

    PubMed  PubMed Central  Google Scholar 

  116. Gururajan A, Naughton M, Scott KA, O’connor R, Moloney G, Clarke G, et al. MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl Psychiatry. 2016;6:e862–e.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bevilacqua L, Cathomas F, Ramakrishnan A, Schneider M, Shen L, Russo S, et al. Gene expression and molecular pathways associated with rapid antidepressant response to ketamine in patients with treatment resistant depression. Biol Psychiatry. 2020;87:S176–7.

    Google Scholar 

  118. Veldman ER, Mamula D, Jiang H, Tiger M, Ekman C-J, Lundberg J, et al. P11 (S100A10) as a potential predictor of ketamine response in patients with SSRI-resistant depression. J Affect Disord. 2021;290:240–4.

    CAS  PubMed  Google Scholar 

  119. McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry. 2021;178:383–99.

    PubMed  PubMed Central  Google Scholar 

  120. Levy MJ, Boulle F, Steinbusch HW, van den Hove DL, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018;235:2195–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Björkholm C, Monteggia LM. BDNF–a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–9.

    PubMed  Google Scholar 

  122. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14:347–53.

    CAS  PubMed  Google Scholar 

  123. Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, et al. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology. 2020;45:1398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tajika A, Ogawa Y, Takeshima N, Hayasaka Y, Furukawa TA. Replication and contradiction of highly cited research papers in psychiatry: 10-year follow-up. Br J Psychiatry. 2015;207:357–62.

    PubMed  Google Scholar 

  125. Fried E. Moving forward: how depression heterogeneity hinders progress in treatment and research. Taylor & Francis; 2017.

  126. Bus B, Molendijk ML, Penninx B, Buitelaar JK, Kenis G, Prickaerts J, et al. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 2011;36:228–39.

    CAS  PubMed  Google Scholar 

  127. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci: AMS. 2015;11:1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Moriarity DP, Alloy LB. Back to basics: the importance of measurement properties in biological psychiatry. Neurosci Biobehavioral Rev. 2021;123:72–82.

  129. Byrd JB, Greene AC, Prasad DV, Jiang X, Greene CS. Responsible, practical genomic data sharing that accelerates research. Nat Rev Genet. 2020;21:615–29.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This systematic review/meta-analysis has not been directly funded by any legal entities or organizations. We received operational support from the Johns Hopkins School of Medicine. TDG is supported by NIH R01-MH107615 and RAI145211A, and VA Merit Awards 1I01BX004062 and 101BX003631-01A1. FSG received partial support from the Johns Hopkins Catalyst Award.

Author information

Authors and Affiliations

Authors

Contributions

GCM: conceptualized the study; designed the study; selected the manuscripts; extracted the data; conducted the statistical analysis; conducted the analysis of bias; drafted the manuscript; revised the manuscript; edited the manuscript for critical intellectual content. TDG: helped conceptualize the study; assisted in statistical design, analysis, and interpretation; drafted the manuscript; revised the manuscript; edited the manuscript for critical intellectual content. WLP: assisted in statistical design, analysis, and interpretation; conducted the analysis of bias; revised the manuscript; edited the manuscript for critical intellectual content. JL: conducted the literature search; revised the manuscript; edited the manuscript for critical intellectual content. MFG, NBF, BS, SS, RMV, EDA, SVP, MAF, and CAZJ: assisted in statistical design, analysis, and interpretation; revised the manuscript; edited the manuscript for critical intellectual content. FSG: conceptualized the study; designed the study; selected the manuscripts; extracted the data; assisted in statistical design, analysis, and interpretation; drafted the manuscript; revised the manuscript; edited the manuscript for critical intellectual content; provided research supervision.

Corresponding author

Correspondence to Fernando S. Goes.

Ethics declarations

Competing interests

TDG is listed as co-author on patent and patent applications related to the pharmacology and use of (2R,6R)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorder. He has assigned his patent rights to the University of Maryland Baltimore, but will share a percentage of any royalties that may be received. TDG has received research funding from Allergan and Roche Pharmaceuticals, and has served as a consultant for FSV7 LLC, during the preceding 3 years. NBF holds patents pertaining to improved use of NMDA antagonists as therapeutic agents. EDA has served on advisory boards for Alkermes, Janssen, Lundbeck/Otsuka, Roche, Sunovion and Teva and reports previous stock holdings in AstraZeneca, Johnson & Johnson, Moderna, and Pfizer. EDA has received research support from Alkermes, Astellas, Biogen, Boehringer-Ingelheim, InnateVR, Janssen, National Network of Depression Centers, Neurocrine Biosciences, Novartis, Otsuka, Pear Therapeutics, Takeda and serves on the SMI Adviser LAI Center of Excellence (unpaid). BS reports research time support from Medibio (unrelated to the current study); grant support from Mayo Clinic. SS has received grants/research support from NIMH R21 (1R21MH119441 – 01A1) and SAMHSA (FG000470-01) and research supplement funds from The University of Texas Health Science Center at Houston. SS has received speaking honoraria from British Medical Journal Publishing Group and received research support from Compass pathways, Janssen and LivaNova. RMV has received consulting fees from Eurofarma Pharmaceuticals. Abbott and BioStrategies group, and has a research contract for trials with Janssen and Boehringer-Ingelheim Pharmaceuticals. RMV has also received speaker fees from Otsuka, Lundbeck, EMS, and Cristalia and is a member of the scientific board of Symbinas Pharmaceuticals and Allergan. SVP has received honoraria for consulting or research funds from Assurex (Myriad), Sage, Otsuka, Takeda, Janssen, Aifred, Mensante, Canadian Institutes for Health Research, Ontario Brain Institute, and the Flinn Foundation. MAF has received Grant Support from Assurex Health, and Mayo Foundation. He also has financial interests in Chymia LLC. CAZ is a full-time U.S government employee. He is listed as a coinventor on a patent for the use of ketamine in major depression and suicidal ideation. CAZ is listed as a coinventor on a patent for the use of (2 R,6 R)-hydroxynorketamine, (S)-dehydronorketamine, and other stereoisomeric dehydro and hydroxylated metabolites of (R,S)-ketamine metabolites in the treatment of depression and neuropathic pain. CAZ is listed as co-inventor on a patent application for the use of (2 R,6 R)-hydroxynorketamine and (2 S,6 S)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorders. CAZ has assigned his patent rights to the U.S. government but will share a percentage of any royalties that may be received by the government. FSG has received research grant support from Janssen Therapeutics. GCM, WLP, JN, and MFG do not have conflicts of interest to report.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medeiros, G.C., Gould, T.D., Prueitt, W.L. et al. Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis. Mol Psychiatry 27, 3658–3669 (2022). https://doi.org/10.1038/s41380-022-01652-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01652-1

This article is cited by

Search

Quick links