Skip to main content
Log in

RF micro-electro-mechanical system (MEMS) capacitive switch performance parameters and improvement strategies

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this review article, the important switch performance parameters such as actuation voltage, capacitance ratio, radio frequency-scattering parameters (RF S-parameters), the effect of air gap variation and switching time are covered along with their improvement strategies and methods. The available methods in literatures suggest that reduced spring constant of a beam, employing Push- Pull structure and use of two movable plate structure (TMPS) can improve actuation voltage requirement to a great extent. The capacitance ratio improvement strategy involves use of special structure like floating metal electrode, effective capacitive area, use of metal–insulator metal (MIM) capacitor, high-k dielectrics like lithium titanium oxide (LTO), aluminium nitride (AlN), however, high-k dielectrics may result in stiction problem. The benchmark capacitance models are also reviewed which helps in proper estimation of capacitance in a MEMS capacitive switch. The RF performance in MEMS switch is computed by using scattering parameters of coplanar waveguide line. The important tools and methods which have been extensively used for RF performance computation are also discussed. The effect of air height reduction on performance of the switch is explained by two methods: direct reduction and reduction using thick dielectric layer. Direct reduction method is recommended because thicker dielectric layer causes more dielectric charging and creates stiction. The switching time and release time in a MEMS switch is characterised by the choice of material and its properties, the dimension and design opted for switch, air gap height and dielectric material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

references

  • Aadit MNA, Kirtania SG, Afrin F, Alam MK, Khosru QDM (2017) High electron mobility transistors: performance analysis, research trend and applications. Different types of field-effect transistors: theory and applications, pp 45–64

  • Agarwal S, Kashyap R, Guha K, Baishya S (2017) Modeling and analysis of capacitance in consideration of the deformation in rf mems shunt switch. Superlattices Microstruct 101:567–574

    Article  Google Scholar 

  • Aghaei S, Abbaspour-Sani E (2010) A low voltage vertical comb rf mems switch. Microsyst Technol 16(6):919–924

    Article  Google Scholar 

  • Al-Dahleh R, Mansour RR (2010) High-capacitance-ratio warped- beam capacitive mems switch designs. J Microelectromech Syst 19(3):538–547

    Article  Google Scholar 

  • Alsaleem FM, Hasan MHH, Tesfay MK (2018) A mems nonlinear dynamic approach for neural computing. J Microelectromech Syst 27(5):780–789

    Article  Google Scholar 

  • Angira M, Rangra K (2015) Design and investigation of a low insertion loss, broadband, enhanced self and hold down power rf-mems switch. Microsyst Technol 21(6):1173–1178

    Article  Google Scholar 

  • Angira M, Sundaram GM, Rangra KJ, Bansal D, Kaur M (2013) On the investigation of an interdigitated, high capacitance ratio shunt rf-mems switch for x-band applications. Proc NSTI Nanotech, Washington 2:189–192

    Google Scholar 

  • Ansari HR, Taghaddosi MB (2019) Optimization and development of the rf mems structures for low voltage, high isolation and low stress. Analog Integr Circuits Signal Process 101(3):659–668

    Article  Google Scholar 

  • Autizi E (2011) Reliability and failure analysis of rf-mems switches for space applications

  • Bansal D, Bajpai A, Kumar P, Kaur M, Rangra K (2016) Low actuating voltage spring-free rf mems spdt switch. J Electr Comput Eng 2016

  • Boonying K, Phongcharoenpanich C, Kosulvit S (2014) Polarization reconfigurable suspended antenna using rf switches and pin diodes. In: The 4th joint international conference on information and communication technology, electronic and electrical engineering (JICTEE). IEEE, pp 1–4

  • Brown ER (1998) Rf-mems switches for reconfigurable integrated circuits. IEEE Trans Microw Theory Tech 46(11):1868–1880

    Article  Google Scholar 

  • Chaudhary R, Mudimela PR (2020) 3d modeling of graphene oxide based nanoelectromechanical capacitive switch. In: Microsystem technologies-micro-and nanosystems-information storage and processing systems

  • Chawla P, Khanna R (2015) A new spiral frequency reconfigurable antenna with rf-mems switches for mobile rf front end. Int J Appl Electromagnet Mech 47(2):323–335

    Article  Google Scholar 

  • Cho I-J, Yoon E (2010) Design and fabrication of a single mem- brane push-pull spdt rf mems switch operated by electromagnetic actuation and electrostatic hold. J Micromech Microeng 20(3):035028

    Article  Google Scholar 

  • Dai C, Peng H, Liu M, Wu C, Yang L (2005) Design and fabrication of rf mems switch by the cmos process. Tamkang J Sci Eng 8(3):197

    Google Scholar 

  • Danson J, Plett C, Tait N (2006) Using mems capacitive switches in tunable rf amplifiers. EURASIP J Wirel Commun Netw 2006(1):016518

    Article  Google Scholar 

  • De Coster J, Tilmans HAC, Van Beek JTM, Rijks TGSM, Puers R (2004) The influence of mechanical shock on the operation of electrostatically driven rf-mems switches. J Micromech Microeng 14(9):S49

    Article  Google Scholar 

  • Domurat-Linde A, Lang KD, Hoene E (2012) Influence of igbt-module switching characteristics to radio frequency noise. In: International symposium on electromagnetic compatibility-EMC EUROPE. IEEE, pp 1–6

  • Ezzat MA, El-Bary AA (2012) MHD free convection flow with fractional heat conduction law. Magnetohydrodynamics (0024-998X) 48(4)

  • Ezzat MA, El-Bary AA (2016) Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. Int J Appl Electromagn Mech 50(4):549–567

    Article  Google Scholar 

  • Ezzat M, El-Bary AA, Ezzat S (2011) Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Convers Manag 52(2):934–945

    Article  Google Scholar 

  • Farinelli P, Solazzi F, Calaza C, Margesin B, Sorrentino R (2008) A wide tuning range mems varactor based on a tog- gle push-pull mechanism. In: 2008 European microwave integrated circuit conference. IEEE, pp 474–477

  • Flavio G, Calaza C, Colpo S, Mulloni V, Collini A, Margesini B, Farinelli P, Casini F, Marcelli R, Mannocchi G et al (2008) Development of high con coff ratio rf mems shunt switches. Roman J Inf Sci Tech 11:143–151

    Google Scholar 

  • Gandhi SG, Govardhani I, Kotamraju SK, Kavya KCS, Prathyusha D, Rao KS, Sravani KG (2020) Improve the performance of a novel capacitive shunt rf mems switch by beam and dielectric materials. Trans Electr Electron Mater 21(1):83–90

    Article  Google Scholar 

  • Goel S, Gupta N (2019) Design, optimization and analysis of reconfigurable antenna using rf mems switch. In: Microsystem technologies micro-and nanosystems information storage and processing systems

  • Gong S, Shen H, Barker NS (2011) A 60-ghz 2-bit switched-line phase shifter using sp4t rf-mems switches. IEEE Trans Microw Theory Tech 59(4):894–900

    Article  Google Scholar 

  • Guha K, Kumar M, Agarwal S, Baishya S (2015) A modified capacitance model of rf mems shunt switch incorporating fring- ing field effects of perforated beam. Solid-State Electron 114:35–42

    Article  Google Scholar 

  • Guha K, Laskar NM, Gogoi HJ, Baishnab KL, Srinivasa Rao K (2018) A new analytical model for switching time of a perforated mems switch. Microsyst Technol 26(10):3143–3152

    Article  Google Scholar 

  • Haider ST, Saleem MM, Ahmad M (2017) Fem modeling of squeeze film damping effect in rf-mems switches. In: 2017 4th international conference on electrical engineering, computer science and informatics (EECSI). IEEE, pp 1–7

  • Han Ke, Guo X, Smith S, Deng Z, Li W (2018) Novel high-capacitance-ratio mems switch: Design, analysis and performance verification. Micromachines 9(8):390

    Article  Google Scholar 

  • Jayavardhani K et al (2018) Design and simulation of low actuation voltage shunt rf mems shunt capacitive switch with serpentine flexures & regular perforations. Int J Eng Technol 7:4–8

    Article  Google Scholar 

  • Kang S, Moon S, Kim HC, Chun K (2007) See-saw type rf mems switch with narrow gap vertical comb. J Semicond Technol Sci 7(3):177–182

    Article  Google Scholar 

  • Ke F, Miao J, Tan CW (2009) Performance enhancement by substrate perforation for a wafer-level encapsulated rf mems dc shunt switch. In: 2009 IEEE 22nd international conference on micro electro mechanical systems. IEEE, pp 876–879

  • Khamis AK, Lotfy K, El-Bary AA, Mahdy AMS, Ahmed MH (2021) Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. Waves Random Complex Media 31(6):2499–2513

    Article  MathSciNet  MATH  Google Scholar 

  • Khodadady K, Ganji BA (2016) Design and modeling of a novel rf mems series switch with low actuation voltage. Microsyst Technol 22(12):2921–2929

    Article  Google Scholar 

  • Kolte V, Mahajan PM (2014) Design and analysis of non-uniform shaped rf mems switch. J Comput Electron 13(2):547–554

    Article  Google Scholar 

  • Koutsoureli M, Birmpiliotis D, Michalas L, Papaioannou G (2016) An in depth analysis of pull-up capacitance-voltage characteristic for di-electric charging assessment of mems capacitive switches. Microelectron Reliab 64:688–692

    Article  Google Scholar 

  • Kumar R (2019) Design and simulation of mems shunt capacitive switch for lower switching time. Publishing Goal, p 167

  • Kumar R (2021) Dielectric material selection for high capacitance ratio and low loss in MEMS capacitive switch using Ashby’s methodology. In: IOP conference series: materials science and engineering, vol 1020, no 1. IOP Publishing, p 012029

  • Kumar R et al (2019) Design and analysis of mems shunt capacitive switch with si 3 n 4 dielectric and au beam material to improve actuation voltage and rf performance in consideration with and without circular perforations. Trans Electr Electron Mater 20(4):299–308

    Article  Google Scholar 

  • Kumar R et al (2020a) Novel capacitance evaluation model for microelectromechanical switch considering fringe and effect of holes in pull-up and pull-down conditions. Microsyst Technol 26(3):873–884

    Article  Google Scholar 

  • Kumar R et al (2020b) A modified capacitance model of shunt micro switch based on mems technology in actuation mode: simulation and analytical study. J Phys Conf Ser 1432:012007

    Article  Google Scholar 

  • Kundu A, Sethi S, Mondal NC, Gupta B, Lahiri SK, Saha H (2010a) Performance improvement of rf mems switch with two movable plates. Int J Adv Eng Sci Appl Math 2(1–2):44–49

    Article  Google Scholar 

  • Kundu A, Sethi S, Mondal NC, Gupta B, Lahiri SK, Saha H (2010b) Analysis and optimization of two movable plates rf mems switch for simultaneous improvement in actuation voltage and switching time. Microelectron J 41(5):257–265

    Article  Google Scholar 

  • Kurmendra K (2021a) Investigations on beam membrane and dielectric materials using Ashby’s methodology and their impact on the performance of a MEMS capacitive switch. Microsyst Technol 27(12):4269–4289

    Article  Google Scholar 

  • Kurmendra KR (2021b) Materials selection approaches and fabrication methods in RF MEMS switches. J Electron Mater 50(6):3149–3168

    Article  Google Scholar 

  • Lacroix B, Pothier A, Crunteanu A, Cibert C, Dumas-Bouchiat F, Champeaux C, Catherinot A, Blondy P (2007) Sub-microsecond rf mems switched capacitors. IEEE Trans Microw Theory Tech 55(6):1314–1321

    Article  Google Scholar 

  • Li M, Zhao J, You Z, Zhao G (2017a) Design and experimental validation of a restoring force enhanced rf mems capaci- tive switch with stiction-recovery electrodes. Microsyst Technol 23(8):3091–3096

    Article  Google Scholar 

  • Li M, Zhao J, You Z, Zhao G (2017b) Design and fabrication of a low insertion loss capacitive rf mems switch with novel micro- structures for actuation. Solid-State Electron 127:32–37

    Article  Google Scholar 

  • Liu H, Datta S, Narayanan V (2013) Steep switching tunnel fet: a promise to extend the energy efficient roadmap for post-cmos digital and analog/rf applications. In: International symposium on low power Electronics and Design (ISLPED). IEEE, pp 145–150

  • Liu Y, Bey Y, Liu X (2017) High-power high-isolation rf- mems switches with enhanced hot-switching reliability using a shunt pro- tection technique. IEEE Trans Microw Theory Tech 65(9):3188–3199

    Article  Google Scholar 

  • Lotfy K, Hassan W, El-Bary AA, Kadry MA (2020) Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results Phys 16:102877

    Article  Google Scholar 

  • Lysenko IE, Tkachenko AV, Ezhova OA, Konoplev BG, Ryndin EA, Sherova EV (2020) The mechanical effects influencing on the design of rf mems switches. Electronics 9(2):207

    Article  Google Scholar 

  • Mafinejad Y, Ansari HR, Khosroabadi S (2020) Development and optimization of rf mems switch. Microsyst Technol 26(4):1253–1263

    Article  Google Scholar 

  • Manivannan M, Daniel RJ, Sumangala K (2014) Low actuation voltage rf mems switch using varying section composite fixed-fixed beam. Int J Microw Sci Technol 2014

  • Mercier D, Van Caekenberghe K, Rebeiz GM (2005) Miniature rf mems switched capacitors. In: IEEE MTT-S international microwave symposium digest. IEEE, p 4

  • Molaei S, Ganji BA (2017) Design and simulation of a novel rf mems shunt capacitive switch with low actuation voltage and high isolation. Microsyst Technol 23(6):1907–1912

    Article  Google Scholar 

  • Naji MK, Farhood AD, Ali AH (2019) Novel design and analysis of rf mems shunt capacitive switch for radar and satellite communications. Indones J Electr Eng Comput Sci (IJEECS) 15(2):971–978

    Article  Google Scholar 

  • Narayana TL, Sravani KG, Rao KS (2017) Design and analysis of cpw based shunt capacitive rf mems switch. Cogent Eng 4(1):1363356

    Article  Google Scholar 

  • Negra R, Chu TD, Helaoui M, Boumaiza S, Hegazi GM, Ghannouchi FM (2007) Switch-based gan hemt model suitable for highly-efficient rf power amplifier design. In: 2007 IEEE/MTT-S international microwave symposium. IEEE, pp 795–798

  • Pal J, Zhu Y, Lu J, Dao DV, Khan F (2015) Rf mems switches for smart antennas. Microsyst Technol 21(2):487–495

    Article  Google Scholar 

  • Peroulis D, Pacheco SP, Sarabandi K, Katehi LPB (2003) Electromechanical considerations in developing low-voltage rf mems switches. IEEE Trans Microw Theory Tech 51(1):259–270

    Article  Google Scholar 

  • Pertin O et al (2018) Pull-in-voltage and rf analysis of mems based high performance capacitive shunt switch. Microelectron J 77:5–15

    Article  Google Scholar 

  • Premerlani WJ, Keimel CF, Subramanian K, Wang X, Aimi MF (2010) Mems switch with improved standoff voltage control, April 6 2010. US Patent 7,692,519

  • Raman R, Shanmuganantham T, Sindhanaiselvi D (2018) Analysis of rf mems series switch with serpentine spring shaped cantilever beam for wireless applications. Mater Today Proc 5(1):1890–1896

    Article  Google Scholar 

  • Ravirala AK, Bethapudi LK, Kommareddy J, Thommandru BS, Jasti S, Gorantla PR, Puli A, Karumuri GS, Karumuri SR (2018) Design and performance analysis of uniform meander structured rf mems capacitive shunt switch along with perforations. Microsyst Technol 24(2):901–908

    Article  Google Scholar 

  • Rebeiz GM, Muldavin JB (2001) Rf mems switches and switch circuits. IEEE Microw Mag 2(4):59–71

    Article  Google Scholar 

  • Rijks TGSM, Van Beek JTM, Steeneken PG, Ulenaers MJE, De Coster J, Puers R (2004) Rf mems tunable capacitors with large tuning ratio. In: 17th IEEE international conference on micro electro mechanical systems, Maastricht MEMS 2004 Technical Digest. IEEE, pp 777–780

  • Saffari H, Moghadam RA, Tahmasebipour M (2017) Low actuation voltage rf mems shunt capacitive switch based on rotated serpentine spring. In: 2017 Iranian conference on electrical engineering (ICEE). IEEE, pp 293–297

  • Saffari H, Moghadam RA, Kraft M (2019) Wideband rf mems switch using two dimensional actuations. Analog Integr Circuits Signal Process 100(2):369–376

    Article  Google Scholar 

  • Sailaja BVS, Naik KK (2020) Design and analysis of serpentine meander asymmetric cantilever rf-mems shunt capacitive switch. Analog Integr Circuits Signal Process 102(3):593–603

    Article  Google Scholar 

  • Saito W, Domon T, Omura I, Kuraguchi M, Takada Y, Tsuda K, Yamaguchi M (2006) Demonstration of 13.56-MHz class-e amplifier using a high-voltage gan power-hemt. IEEE Electron Device Lett 27(5):326–328

    Article  Google Scholar 

  • San H, Chen X, Xu P, Li G, Zhan L (2008) Using metal-insulator-semiconductor capacitor to investigate the charge accumulation in capacitive rf mems switches. In: 2008 3rd IEEE international conference on nano/micro engineered and molecular systems. IEEE, pp 1048–1052

  • Sarkar S, Juliet AV (2014) Design of a low voltage rf mems capacitive switch with low spring constant. Int J Adv Res Electr Electron Instrum Eng 3:8966–8973

    Google Scholar 

  • Sharma A, Shah A, Bharti R (2015) Design and simulation of low actuation voltage perforated shunt rf mems switch. Int J Eng Tech Res 3(6):2321–2869

    Google Scholar 

  • Shekhar S, Vinoy KJ, Ananthasuresh GK (2018) Low-voltage high- reliability mems switch for millimeter wave 5g applications. J Micromech Microeng 28(7):075012

    Article  Google Scholar 

  • ShenS-C, Feng M (1999) Low actuation voltage rf mems switches with signal frequencies from 0.25 GHz to 40 GHz. In: International electron devices meeting 1999. Technical Digest (Cat. No. 99CH36318). IEEE, pp 689–692

  • Siegel C, Ziegler V, Von Wa¨chter C, Scho¨nlinner B, Prechtel U, Schumacher H (2006) Switching speed analysis of low complexity rf-mems switches. In: Proc. GeMiC, pp 1–3

  • Singh T, Khaira N (2014) High isolation single-pole four-throw rf mems switch based on series-shunt configuration. Sci World J 2014

  • Sinha N, Mahameed R, Zuo C, Pisani MB, Perez CR, Piazza G (2008) Dual beam actuation of piezoelectric aln rf mems switches integrated with aln contour-mode resonators. Departmental Papers (ESE), p 401

  • SinskyJH, Westgate CR (1997) Design of an electronically tun- able microwave impedance transformer. In: 1997 IEEE MTT-S international microwave symposium digest, vol 2. IEEE, pp 647–650

  • Sravani KG, Guha K, Rao KS (2019) Analysis of a novel rf mems switch using different meander techniques. Microsyst Technol 26(5):1625–1635

    Article  Google Scholar 

  • Stehle A, Georgiev G, Ziegler V, Schoenlinner B, Prechtel U, Seidel H, Schmid U (2008) Rf-mems switch and phase shifter optimized for w-band. In: 2008 38th European microwave conference. IEEE, pp 104–107

  • Swarnkar A, DasGupta A, Nair DR (2019) Design, fabrication and characterization of rf mems shunt switch for wideband opera- tion of 3 GHz to 30 GHz. J Micromech Microeng 29(11):115009

    Article  Google Scholar 

  • Tazzoli A, Peretti V, Gaddi R, Gnudi A, Zanoni E, Meneghesso G (2006) Reliability issues in rf-mems switches submitted to cycling and esd test. In: 2006 IEEE international reliability physics symposium proceedings. IEEE, pp 410–415

  • Thakar V, Wu Z, Rais-Zadeh M (2012) A high on/off ratio mems capacitive switch with applications in solar energy harvesting. In: Solid-state sensors, actuators and microsystems workshop, pp 385–88

  • Thalluri LN, Guha K, Rao KS, Prasad GVH, Sravani KG, Sastry KSR, Kanakala AR, Babu PB (2020) Perforated serpentine membrane with aln as dielectric material shunt capacitive rf mems switch fabrication and characterization. Microsyst Technol 1–13

  • Tomislav C, Marinkovic´ Z, Pronic´-Rancˇic´ O, Markovic´ V, Vietzorreck L (2015) ANN approach for analysis of actuation voltage behavior of rf mems capacitive switches. In: 2015 12th international conference on telecommunication in modern satellite, cable and broadcasting services (TELSIKS). IEEE, pp 381–384

  • Tomislav C, Dhuri R, Pronic´-Rancˇic´ O, Markovic´ V, Marinkovic´ Z (2019) Hybrid ann-ecp approach for design of capacitive rf mems switches. In: 2019 14th international conference on advanced technologies, systems and services in telecommunications (TELSIKS). IEEE, pp 327–330

  • Unlu M, Jarrahi M (2014) Miniature multi-contact mems switch for broadband terahertz modulation. Opt Express 22(26):32245–32260

    Article  Google Scholar 

  • Van Der Meijs NP, Fokkema JT (1984) Vlsi circuit reconstruction from mask topology. Integration 2(2):85–119

    Article  Google Scholar 

  • Van Spengen WM, Puers R, Mertens R, De Wolf I (2004) A comprehensive model to predict the charging and reliability of capacitive rf mems switches. J Micromech Microeng 14(4):514

    Article  Google Scholar 

  • Wang L, Jin Y (2017) A push-pull double-contact mems relay fabricated by metalmumps process. Microsyst Technol 23(6):2257–2262

    Article  Google Scholar 

  • Wang L-F, Han L, Tang J-Y, Huang Q-A (2012) Fabrication of a push-pull type electrostatic comb-drive rf mems switch. In: Sensors, 2012 IEEE, pp 1–4

  • Wei H, Deng Z, Guo X, Wang Y, Yang H (2017) High on/off capacitance ratio rf mems capacitive switches. J Micromech Microeng 27(5):055002

    Article  Google Scholar 

  • Wei H, Jia S, Deng Z (2019) Inductively-tuned k/ka band rf mems capacitive switches. Prog Electromagn Res 83:51–61

    Article  Google Scholar 

  • Youssef HM, El-Bary AA (2009) Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theories—state space approach. J Therm Stress 32(12):1293–1309

    Article  Google Scholar 

  • Yuan-Wei Y, Zhu J, Jia S-X, Shi Yi (2009) A high isolation series-shunt rf mems switch. Sensors 9(6):4455–4464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurmendra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmendra, Kumar, R. RF micro-electro-mechanical system (MEMS) capacitive switch performance parameters and improvement strategies. Microsyst Technol 28, 1765–1783 (2022). https://doi.org/10.1007/s00542-022-05324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05324-6

Navigation