Skip to main content
Log in

Application of airborne and ground geophysics to unravel the hydrogeological complexity of the Deccan basalts in central India

Application de la géophysique aéroportée et au sol pour déchiffrer la complexité hydrogéologique des basaltes du Deccan dans le centre de l’Inde

Aplicación de la geofísica aérea y terrestre para dilucidar la complejidad hidrogeológica de los basaltos del Decán en la India central

应用机载和地面地球物理揭示印度中部Deccan玄武岩的水文地质复杂性

Aplicação de geofísica aerotransportada e de superfície para desvendar a complexidade hidrogeológica dos basaltos Deccan na Índia central

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater occurrence in continental flood basalt, where multiple lava flows separated by intertrappean and irregular patterns of lineaments govern the regional hydro-dynamics, is poorly understood. This necessitates a high-resolution hydrogeophysical investigation to devise an effective groundwater management plan. To enhance the knowledge and unravel the hydrogeological complexity of such systems, an integrated hydrogeophysical investigation consisting of local-scale vertical electrical soundings, ground-based transient electromagnetic soundings, relatively large-scale electrical resistivity tomography (ERT) and helicopter-borne transient electromagnetic (H-TEM) surveys was carried out in an area of the Deccan Traps (372 km2) near Nagpur, central India. A 14.4-km-long and almost continuous profile of ERT was conducted, with special attention to the lateral discontinuity, which was compared with the H-TEM data. The results from these studies were further supported and validated by drilling of exploratory wells at select locations, geophysical logging and pumping tests. Integration of the results successfully provided a geophysical characterization of the basalts, to develop a consistent lithological model that was finally transformed into hydrogeological sections. The pumping test (exploratory wells) derived aquifer transmissivity data that complemented the anomalies of the electrical parameters. Furthermore, the hydrogeological observations revealed that the groundwater yield is strongly correlated (R2 = 0.78) with the depth to the Basalt-Gondwana contact.

Résumé

La présence d’eaux souterraines dans les basaltes des traps continentaux, où de multiples coulées de lave séparées par des schémas d’inter trapps et irréguliers de linéaments qui régissent l’hydrodynamique régionale, est mal comprise. Cela nécessite une étude hydrogéophysique à haute résolution pour élabore un plan de gestion efficace des eaux souterraines. Pour améliorer les connaissances et déchiffrer la complexité hydrogéologique de ces systèmes, une exploration hydrogéophysique intégrée consistant en des sondages électriques verticaux à l’échelle locale, des sondages électromagnétiques au sol, en mode transitoire, une tomographie par résistivité électrique (ERT) à relativement grande échelle et des relevés électromagnétiques en mode transitoire (HTEM) en aéroporté par hélicoptère ont été effectués dans une zone des Trapps du Deccan (372 km2) près de Nagpur, dans le centre de l’Inde. Un profil de 14.4 km de long et presque continu d’ERT a été réalisé, avec une attention particulière à la discontinuité latérale, et qui a été comparée aux données d’HTEM. Les résultats de ces études ont été étayés et validés par la réalisation de forages d’exploration en endroits choisis, par des diagraphies géophysiques et par des essais de pompage. L’intégration des résultats a permis de fournir une caractérisation géophysique des basaltes, de développer un modèle lithologique cohérent qui a finalement été transformé en coupes hydrogéologiques. Les essais de pompage au niveau des forages d’exploration ont permis d’obtenir des données sur la transmissivité de l’aquifère complétant les anomalies des paramètres électriques. En outre, les observations hydrogéologiques ont révélé que l’emmagasinement de l’aquifère était fortement corrélé (R2 = 0.78) avec la profondeur du contact entre les basaltes et les séquences sédimentaires du Gondwana.

Resumen

Es poco conocida la presencia de aguas subterráneas en basaltos continuos, donde múltiples coladas de lava separadas por patrones intertrapezoidales e irregulares de lineamientos gobiernan la hidrodinámica regional. Esto requiere una investigación hidrogeofísica de alta resolución para diseñar un plan eficiente de gestión de las aguas subterráneas. Para mejorar el conocimiento y desentrañar la complejidad hidrogeológica de estos sistemas, se llevó a cabo una investigación hidrogeofísica integrada que consistía en sondeos eléctricos verticales a escala local, sondeos electromagnéticos transitorios en tierra, tomografía de resistividad eléctrica (ERT) a escala relativamente grande y estudios electromagnéticos transitorios desde helicóptero (HTEM) en una zona de las Trampas del Decán (372 km2) cerca de Nagpur, en el centro de la India. Se realizó un perfil casi continuo de ERT de 14.4 km de longitud, con especial atención a la discontinuidad lateral, que se comparó con los datos de HTEM. Los resultados de estos estudios se apoyaron y validaron además mediante la perforación de pozos exploratorios en lugares seleccionados, el registro geofísico y las pruebas de bombeo. La integración de los resultados proporcionó con éxito una caracterización geofísica de los basaltos, para desarrollar un modelo litológico consistente que finalmente se transformó en secciones hidrogeológicas. Las pruebas de bombeo (pozos exploratorios) obtuvieron datos de transmisividad del acuífero que complementaron las anomalías de los parámetros eléctricos. Además, las observaciones hidrogeológicas revelaron que el rendimiento de las aguas subterráneas estaba fuertemente correlacionado (R2 = 0,78) con la profundidad del contacto Basalto-Gondwana.

摘要

陆面洪流式玄武岩中的地下水分布情况知之甚少, 其中由跨层和不规则的构造线分隔的多个熔岩流控制了区域水动力学。这就需要进行高分辨率的水文地球物理调查, 以制定有效的地下水管理计划。为了增强知识并揭示此类系统的水文地质复杂性, 在印度中部那格浦尔附近的德干陷阱(372 km2)地区进行了综合水文地球物理调查, 包括局部尺度垂直电测深、地面瞬态电磁测深、相对大尺度电阻率层析成像(ERT)和直升机载瞬态电磁探测(HTEM)调查。进行了 14.4 km长且几乎连续的 ERT 剖面, 特别注意了横向不连续性, 并与 HTEM 数据进行了比较。这些研究的结果通过在选定位置钻探探井、地球物理测井和抽水试验得到了进一步支撑和验证。结果的整合成功地提供了玄武岩的地球物理特征, 以形成一致的岩性模型, 最终转化为水文地质剖面。抽水试验(探井)得出的含水层压力传导系数数据补充了电气参数的异常。此外, 水文地质观测表明, 地下水出水量与Basalt-Gondwana接触点的深度密切相关(R2 = 0.78)。

Resumo

A ocorrência de águas subterrâneas em derrames basálticos continentais, onde múltiplos fluxos de lava foram separados por padrões intertrapeados e irregulares de lineamentos que governam a hidrodinâmica regional, é pouco compreendida. Isto requer uma investigação hidrogeofísica de alta resolução para elaborar um efetivo plano de gestão de águas subterrâneas. Para melhorar o conhecimento e desvendar a complexidade hidrogeologica de tais sistemas, uma investigação hidrogeofísica integrada constituída por sondagens elétricas verticais em escala local, sondagens eletromagnéticas transientes do solo, tomografia de resistividade elétrica (TRE) em escala relativamente grande e levantamento eletromagnético transiente a bordo de helicópteros (LEMTH) foram conduzidos em uma área dos Derrames Basalticos de Deccan (372 km2) próximo a Nagpur, na Índia central. Um perfil TRE de comprimento de 14.4 km e praticamente continuo foi realizado, com atenção especial a descontinuidade lateral, que foi comparado com os dados LEMTH. Os resultados desses estudos foram posteriormente suportados e validados pela perfuração de poços exploratórios em locais selecionados, perfilagem geofísica e testes de bombeamento. A integração dos resultados proporcionou uma eficiente caracterização geofísica dos basaltos, para desenvolver um modelo litológico consistente que foi por fim transformado em seções hidrogeológicas. O teste de bombeamento (poços exploratórios) derivou a transmissividade do aquífero que complementou as anomalias dos parâmetros elétricos. Além disso, as observações hidrogeológicas revelaram que a produtividade de águas subterrâneas apresenta uma forte correlação (R2 = 0.78) com a profundidade de contato dos Basaltos-Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adyalkar PG, Mani VVS (1971) Palaeogeography, geomorphological setting and groundwater possibilities in the Deccan Traps of Western Maharashtra. Bull Volcanol 35(3):696–708

    Article  Google Scholar 

  • Ahmed S, Chandra S, Rangarajan R, Mondal NC, Sonkamble S, Nagaiah E, Somvanshi VK, Reddy DV (2016) Synoptic report: pilot aquifer mapping (AQUIM) project: findings, efficacy and protocol. Tech. report no. NGRI-2016-GW-900, NRGI, New York, 79 pp

  • Alger RP (1966) Interpretation of electric logs in fresh water wells in unconsolidated formation. Soc. Prof. Well Log. Analysts, Trans. 7th Annual Logging Symposium, Tulsa, OK, May 1966, pp CC1–CC25

  • Andersen TR, Poulsen SE, Thomsen P, Havas K (2018) Geological characterization in urban areas based on geophysical mapping: a case study from Horsens, Denmark. J Appl Geophys 150:338–349

    Article  Google Scholar 

  • Barker RD (1978) The offset system of electrical resistivity sounding and its use with a multi-core cable. Geophys Prospect 29:128–143

    Article  Google Scholar 

  • Belknap WB, Dewan JT, Kirkpatrick CV, Mott WE, Perason AJ, Rabson WR (1960) API Calibration Facility for Nuclear Logs. Drilling Production, American Petroleum Institute, Washington, DC, 289 pp

  • Bilgrami SA (1999) A reconnaissance geological map of the eastern part of the Deccan Traps (Bidar–Nagpur). J Geol Soc India 43:219–232

    Google Scholar 

  • CGWB (Central Ground Water Board) (2015) Report on pilot project on aquifer mapping in Chandrabhaga watershed (WGKKC-2), Nagpur district, Maharashtra. Central Region, Nagpur, Ministry of Water Resources, River Development and Ganga Rejuvenation, Gov. of India, New Delhi, 13 pp

  • Chandra S, Nagaiah E, Veerababu N, Mondal NC, Somvanshi VK, Ahmed S (2016a) Advanced geophysical investigation including Heliborne TEM in high-resolution aquifer mapping with special emphasis on crystalline hard rocks. J Geol Soc India 5:87–96. https://doi.org/10.17491/cgsi/2016/95954

    Article  Google Scholar 

  • Chandra S, Ahmed S, Auken E, Pedersen JB, Singh A, Verma SK (2016b) 3D aquifer mapping employing airborne geophysics to meet India’s water future. Lead Edge 35(9):770–774. https://doi.org/10.1190/tle35090770.1

    Article  Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions and external consequences. Rev Geophys 32:1–36

    Article  Google Scholar 

  • Dey A, Morrison HF (1979) Resistivity modelling for arbitrary shaped two-dimensional structures. Geophys Prospect 27:1020–1036

    Article  Google Scholar 

  • Dyck JH, Keys WS, Meneley WA (1972) Application of geophysical logging to groundwater studies in southeastern Saskatchewan. Can J Earth Sci 9(1):78–94

    Article  Google Scholar 

  • Ghosh P, Sayeed MRG, Islam R, Hundekari SM (2006) Inter-basaltic clay (bole-bed) horizons from Deccan traps of India: implications for palaeo-climate during Deccan trap volcanism. Palaeogeogr Palaeoclimatol Palaeoecol 242:90–109

    Article  Google Scholar 

  • Goldman M, Neubauer FM (1994) Groundwater exploration using integrated geophysical techniques. Surv Geophys 15(3):331–361. https://doi.org/10.1007/BF00665814

    Article  Google Scholar 

  • Griffiths DH, Turnbull J, Olayinka AI (1990) Two-dimensional resistivity mapping with a computer-controlled array. First Break 8:121–129

    Article  Google Scholar 

  • Gupta G, Patil JD, Maiti S, Erram VC, Pawar NJ, Mahajan SH, Suryawanshi RA (2015) Electrical resistivity imaging for aquifer mapping over Chikotra basin, Kolhapur district, Maharashtra. Environ Earth Sci 73(12):8125–8143

    Article  Google Scholar 

  • Henriet JP (1976) Direct applications of the Dar Zarrouk parameters in ground water surveys. Geophys Prospect 24(2):344–353

    Article  Google Scholar 

  • Kale VS, Subbarao KV (2004) Some observations on the recession of the Western Ghat escarpment in the Deccan trap region, India: based on geomorphological evidence. Trans Jpn Geomorphol Union 25(3):231–245

    Google Scholar 

  • Koefoed O (1969) An analysis of equivalence in resistivity sounding. Geophysical Prospecting 17(3):327–335

    Article  Google Scholar 

  • Krishnan MS (1982) Geology of India and Burma, 6th edn. CBS, New Delhi

    Google Scholar 

  • Langford E (2017) Quartiles in elementary statistics. J Stat Educ 14(3):2006. https://doi.org/10.1080/10691898.2006.11910589

  • Lashkaripour GR (2003) An investigation of groundwater condition by geoelectrical resistivity method in Korin Aquifer, Southeast Iran. J Spat Hydrol 3:1–5

    Google Scholar 

  • Leite DN, Bortolozo CA, Porsani JL, CoutoJr MA, Campana JDR, Santos FAM, Rangel RC, Hamada LR, Sifontes RV, Oliveira GS, Stangiri MC (2018) Geoelectrical characterization with 1D VES/TDEM joint inversion in Urupês-SP region, Paraná Basin: applications to hydrogeology. J Appl Geophys 151:205–220

    Article  Google Scholar 

  • Lightfoot P, Hawkesworth C (1988) Origin of Deccan Trap lavas: evidence from combined trace element and Sr-, Nd- and Pb-isotope Studies. Earth Planet Sci Lett 91:89–104

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least squares inversion of apparent resistivity pseudosections by a quasi Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Madhnure P (2014) Groundwater exploration and drilling problems encountered in basaltic and granitic terrain of Nanded District, Maharashtra. J Geol Soc India 84:341–351

    Article  Google Scholar 

  • Madhnure P, Kaplay RD, Potdar SS, Sangnor H, Rao AD (2017) Impact of urbanization coupled with drought situations on groundwater quality in shallow (basalt) and deeper (granite) aquifers with special reference to fluoride in Nanded-Waghala Municipal Corporation, Nanded District, Maharashtra (India). Environ Monit Assess 189:428. https://doi.org/10.1007/s10661-017-6098-9

    Article  Google Scholar 

  • Maiti S, Erram VC, Gupta G, Tiwari RK (2012) ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). J Hydrol 464–465:281–293. https://doi.org/10.1016/j.jhydrol.2012.07.020

    Article  Google Scholar 

  • Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12(4):529–556

    Article  Google Scholar 

  • Mehta M (1989) Groundwater resources and development potential of Nagpur district, Maharashtra. 434/DR/12/89, Report of Central Groundwater Board, India

  • Moharir K, Pande C, Patil S (2017) Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software. Geosci Front 8(6):1385–1395

    Article  Google Scholar 

  • Muchingami I, Hlatywayo DJ, Nel JM, Chuma C (2012) Electrical resistivity survey for groundwater investigations and shallow subsurface evaluation of the basaltic-greenstone formation of the urban Bulawayo aquifer. Phys Chem Earth, Parts A/B/C 50–52:44–51

    Article  Google Scholar 

  • Nagaiah E, Sonkamble S, Mondal NC, Ahmed S (2017) Natural zeolites enhance groundwater quality: evidences from Deccan basalts in India. Environ Earth Sci 76:536

    Article  Google Scholar 

  • Nagaiah E, Sonkamble S, Chandra S (2022) Gradient resistivity profiling (GRP) for pin-pointing the bedrock fracture for groundwater exploration in granitic hard rocks of Southern India. J Appl Geophys 199:104610

  • Neuman SP (1975) Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resour Res 11(2):329–342

    Article  Google Scholar 

  • Nimmer RE, Osiensky JL, Binley AM, Sprenke KF, Williams BC (2007) Electrical resistivity imaging of conductive plume dilution in fractured rock. Hydrogeol J 15(5):877–890

    Article  Google Scholar 

  • Pawar NJ, Das S, Duraiswami RA (2012) Hydrogeology of Deccan traps and associated formations in peninsular India. Geol Soc India Mem 80

  • Piersol MW, Sprenke KF (2015) A Columbia River basalt group aquifer in sustained drought: insight from geophysical methods. Resources 4:577–596. https://doi.org/10.3390/resources4030577

    Article  Google Scholar 

  • Rai SN, Thiagarajan S, Kumari YR, Rao VA, Manglik A (2013) Delineation of aquifers in basaltic hard rock terrain using vertical electrical soundings data. J Earth Syst Sci 122(1):29–41

    Article  Google Scholar 

  • Raiber M, Webb JA, Cendón DI, White PA, Jacobsen GE (2015) Environmental isotopes meet 3D geological modelling: conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of south-western Victoria, Australia. J Hydrol 527:262–280

    Article  Google Scholar 

  • Ruppel ET (1963) Geology of the Basin quadrangle, Jefferson, Lewis and Clark, and Powell counties, Montana. US Geoll Surv Bull 1151, 121 pp

  • Saha D, Patranabis-Deb S, Collins AS (2016) Proterozoic stratigraphy of southern Indian cratons and global context, chap 1. Stratigr Timescales 1:1–59

    Article  Google Scholar 

  • Sandberg SK, Slater LD, Versteeg R (2002) An integrated geophysical investigation of the hydrogeology of ananisotropic unconfined aquifer. J Hydrol 267:227–243

    Article  Google Scholar 

  • Scott Keys WS (1990) Borehole geophysics applied to groundwater investigations. In: Techniques of Water Resources Investigations, Book 2, Chapter E2, US Geol Surv, Reston, VA

  • Singhal BBS (1997) Hydrogeological characteristics of Deccan trap formations of India. Hard Rock Hydrosysteins, Proceedings of Rabat Symposium S2, IAHS Publ. no. 241, IAHS, Wallingford, UK, pp 75–80

  • Sonkamble S, Sahya A, Mondal NC, Harikumar P (2012) Appraisal and evolution of hydrochemical processes from proximity basalt and granite areas of Deccan Volcanic Province (DVP) in India. J Hydrol 438–439:181–193

    Article  Google Scholar 

  • Sonkamble S, Chandra S, Nagaiah E, Dar FA, Somvanshi VK, Ahmed S (2014) Geophysical signatures resolving hydrogeological complexities over hard rock terrain: a study from Southern India. Arab J Geosci 7(6):2249–2256

    Article  Google Scholar 

  • Sonkamble S, Chandra S, Pujari PR (2020) Hydrogeophysical data of DVP. HydroShare. https://doi.org/10.4211/hs.5f3441e709c44784905db7fbcc89972b

  • Spichak VV (2015) Electromagnetic sounding of the earth’s interior: theory, modelling, practice. Shallow investigations by TEM-FAST technique: methodology and examples, chap 3, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Theis CV (1935) The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos Trans AGU 16:519

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Boston

  • United Nations (2020) Map of the world. https://www.un.org/geospatial/content/map-world. Accessed June 2022

  • Valdiya KS (2016) The making of India geodynamic evolution, 2nd edn. Springer, Cham, Switzerland, 418 pp

    Book  Google Scholar 

  • Vonhoff JA (1966) Water quality determinations from spontaneous: potential electric log curves. J Hydrol 4:341–347

    Article  Google Scholar 

  • Zohdy AAR (1974) Use of Dar Zarrouk curves in the interpretation of vertical electrical sounding data. U.S. Geological Survey, Geological Survey Bulletin 1313-D, U.S.G.S

Download references

Acknowledgements

We thank editor Martin Appold and two anonymous reviewers for giving us valuable constructive comments to improve the manuscript. We acknowledge CGWB India for providing necessary data on hydrogeology, exploratory drilling and borehole lithologs. We extend our thanks to Dr. S.K. Verma (Retd. Scientist at CSIR-NGRI) for his scientific advice and Mr. Abhijeet Bhondwe and Mr. Tarun Gaur for their help during field data collection and technical support. We thank the former and present directors of CSIR-NGRI for their encouragement and for approving (Ref. No. NGRI/Lib/2020/ Pub-173) the article for publication.

Funding

The study has been funded by the World Bank under AQUIM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahebrao Sonkamble.

Ethics declarations

Conflicts of interest

The authors declare that they have no known conflicts of interest, competing financial interests nor personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonkamble, S., Chandra, S. & Pujari, P.R. Application of airborne and ground geophysics to unravel the hydrogeological complexity of the Deccan basalts in central India. Hydrogeol J 30, 2097–2116 (2022). https://doi.org/10.1007/s10040-022-02503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02503-7

Keywords

Navigation