Skip to main content
Log in

Finite element simulation for elastic dislocation of the North-Tehran fault: The effects of geologic layering and slip distribution for the segment located in Karaj

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The present study uses the finite element method for simulating the crustal deformation due to the dislocation of a segment of the North-Tehran fault located in the Karaj metropolis region. In this regard, a geological map of Karaj that includes the fault segment is utilized in order to create the geometry of finite element model. First, finite element analysis of homogeneous counterpart of the fault’s domain with two different sections was performed, and the results were compared to those of Okada’s analytical solutions. The fault was modeled with the existing heterogeneity of the domain having been considered. The influences of both uniform and non-uniform slip distributions were investigated. Furthermore, three levels of simplification for geometric creation of geological layers’ boundaries were defined in order to evaluate the effects of the geometric complexity of the geological layering on the displacement responses obtained with the finite element simulations. In addition to the assessment of slip distribution, layering complexity and heterogeneity, the results demonstrate both the capability and usefulness of the proposed models in the dislocation analysis for the Karaj segment of North-Tehran fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sabagh M, Ghalandarzadeh A. Centrifuge experiments for shallow tunnels at active reverse fault intersection. Frontiers of Structural and Civil Engineering, 2020, 14(3): 731–745

    Article  Google Scholar 

  2. Izadi M, Bargi K. Improvement of mechanical behavior of buried pipelines subjected to strike-slip faulting using textured pipeline. Frontiers of Structural and Civil Engineering, 2019, 13(5): 1105–1119

    Article  Google Scholar 

  3. Igel H. Computational Seismology: A Practical Introduction. Oxford: OUP Oxford, 2016

    Book  MATH  Google Scholar 

  4. Fichera G. The Italian contribution to the mathematical theory of elasticity. Meccanica, 1984, 19(4): 259–268

    Article  MathSciNet  MATH  Google Scholar 

  5. Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1985, 75(4): 1135–1154

    Article  Google Scholar 

  6. Okada Y. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1992, 82(2): 1018–1040

    Article  Google Scholar 

  7. van Zwieten G J, Hanssen R F, Gutiérrez M A. Overview of a range of solution methods for elastic dislocation problems in geophysics. Journal of Geophysical Research. Solid Earth, 2013, 118(4): 1721–1732

    Article  Google Scholar 

  8. Zakian P. An efficient stochastic dynamic analysis of soil media using radial basis function artificial neural network. Frontiers of Structural and Civil Engineering, 2017, 11(4): 470–479

    Article  Google Scholar 

  9. Ranjbarnia M, Zaheri M, Dias D. Three-dimensional finite difference analysis of shallow sprayed concrete tunnels crossing a reverse fault or a normal fault: A parametric study. Frontiers of Structural and Civil Engineering, 2020, 14(4): 998–1011

    Article  Google Scholar 

  10. Megna A, Barba S, Santini S. Normal-fault stress and displacement through finite-element analysis. Annals of Geophysics, 2005, 48(6): 1009–1016

    Google Scholar 

  11. Megna A, Barba S, Santini S, Dragoni M. Effects of geological complexities on coseismic displacement: Hints from 2D numerical modelling. Terra Nova, 2008, 20(3): 173–179

    Article  Google Scholar 

  12. van Zwieten G J, van Brummelen E H, van der Zee K G, Gutiérrez M A, Hanssen R F. Discontinuities without discontinuity: The weakly-enforced slip method. Computer Methods in Applied Mechanics and Engineering, 2014, 271: 144–166

    Article  MathSciNet  MATH  Google Scholar 

  13. Zakian P, Khaji N. Spectral finite element simulation of seismic wave propagation and fault dislocation in elastic media. Asian Journal of Civil Engineering, 2016, 17(8): 1189–1213

    Google Scholar 

  14. Zakian P, Khaji N. A stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuities. Computational Mechanics, 2019, 64(4): 1017–1048

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou S, Zhuang X, Zhu H, Rabczuk T. Phase field modelling of crack propagation, branching and coalescence in rocks. Theoretical and Applied Fracture Mechanics, 2018, 96: 174–192

    Article  Google Scholar 

  16. Zhang Y, Zhuang X. Cracking elements: A self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elements in Analysis and Design, 2018, 144: 84–100

    Article  MathSciNet  Google Scholar 

  17. Zhang Y, Zhuang X. Cracking elements method for dynamic brittle fracture. Theoretical and Applied Fracture Mechanics, 2019, 102: 1–9

    Article  Google Scholar 

  18. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  19. Giraldo D, Restrepo D. The spectral cell method in nonlinear earthquake modeling. Computational Mechanics, 2017, 60(6): 883–903

    Article  MathSciNet  MATH  Google Scholar 

  20. Zakian P. Stochastic finite cell method for structural mechanics. Computational Mechanics, 2021, 68(1): 185–210

    Article  MathSciNet  MATH  Google Scholar 

  21. Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476

    Article  MathSciNet  Google Scholar 

  22. Cattin R, Briole P, Lyon-Caen H, Bernard P, Pinettes P. Effects of superficial layers on coseismic displacements for a dip-slip fault and geophysical implications. Geophysical Journal International, 1999, 137(1): 149–158

    Article  Google Scholar 

  23. Zhao S, Müller R, Takahashi Y, Kaneda Y. 3-D finite-element modelling of deformation and stress associated with faulting: Effect of inhomogeneous crustal structures. Geophysical Journal International, 2004, 157(2): 629–644

    Article  Google Scholar 

  24. Lavecchia G, Castaldo R, Nardis R, De Novellis V, Ferrarini F, Pepe S, Brozzetti F, Solaro G, Cirillo D, Bonano M, Boncio P, Casu F, De Luca C, Lanari R, Manunta M, Manzo M, Pepe A, Zinno I, Tizzani P. Ground deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural-geological data. Geophysical Research Letters, 2016, 43(24): 12389–12398

    Article  Google Scholar 

  25. Zakian P, Khaji N, Soltani M. A Monte Carlo adapted finite element method for dislocation simulation of faults with uncertain geometry. Journal of Earth System Science, 2017, 126(7): 105

    Article  Google Scholar 

  26. Gómez D D, Bevis M, Pan E, Smalley R Jr. The influence of gravity on the displacement field produced by fault slip. Geophysical Research Letters, 2017, 44(18): 9321–9329

    Article  Google Scholar 

  27. Hearn E H. Kinematics of southern California crustal deformation: Insights from finite-element models. Tectonophysics, 2019, 758: 12–28

    Article  Google Scholar 

  28. Berberian M, Yeats R S. Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological Society of America, 1999, 89(1): 120–139

    Google Scholar 

  29. Majidinejad A, Zafarani H, Vahdani S. Dynamic simulation of ground motions from scenario earthquakes on the North-Tehran fault. Geophysical Journal International, 2017, 209(1): 434–452

    Article  Google Scholar 

  30. Majidinejad A, Zafarani H, Vahdani S. Broad-band simulation of M7. 2 earthquake on the North-Tehran fault, considering non-linear soil effects. Geophysical Journal International, 2018, 213(2): 1162–1176

    Article  Google Scholar 

  31. Ritz J F, Nazari H, Ghassemi A, Salamati R, Shafei A, Solaymani S, Vernant P. Active transtension inside central Alborz: A new insight into northern Iran—southern Caspian geodynamics. Geology, 2006, 34(6): 477–480

    Article  Google Scholar 

  32. Liu G R, Quek S S. Finite Element Method: A Practical Course. Oxford: Elsevier Science, 2003

    Book  MATH  Google Scholar 

  33. Kim N H. Introduction to Nonlinear Finite Element Analysis. New York: Springer, 2014

    Google Scholar 

  34. Boulbes R J. Troubleshooting Finite-Element Modeling with Abaqus. Cham: Springer, 2020

    Book  MATH  Google Scholar 

  35. Hori M. Introduction to Computational Earthquake Engineering. London: World Scientific, 2011

    Book  MATH  Google Scholar 

  36. Zhang J, Xiao Y, Liang Z. Mechanical behaviors and failure mechanisms of buried polyethylene pipes crossing active strike-slip faults. Composites. Part B, Engineering, 2018, 154: 449–466

    Article  Google Scholar 

  37. Khezri M, Heidarzadeh G, Shahidi A, Oroujnia P, Vakil Baghmisheh F, Ghaemi J, Haddadan M. Urban geological map of Karaj. Geological Survey & Mineral Exploration of Iran, 2013

  38. Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 1994, 84(4): 974–1002

    Google Scholar 

  39. Kim Y S, Sanderson D J. The relationship between displacement and length of faults: A review. Earth-Science Reviews, 2005, 68(3–4): 317–334

    Article  Google Scholar 

  40. Chen G, Chenevert M E, Sharma M M, Yu M. A study of wellbore stability in shales including poroelastic, chemical, and thermal effects. Journal of Petroleum Science Engineering, 2003, 38(3–4): 167–176

    Article  Google Scholar 

  41. Oku H, Haimson B, Song S R. True triaxial strength and deformability of the siltstone overlying the Chelungpu fault (Chi-Chi earthquake), Taiwan (China). Geophysical Research Letters, 2007, 34(9): L09306

    Article  Google Scholar 

  42. Sanahuja J, Dormieux L, Meille S, Hellmich C, Fritsch A. Micromechanical explanation of elasticity and strength of gypsum: From elongated anisotropic crystals to isotropic porous polycrystals. Journal of Engineering Mechanics, 2010, 136(2): 239–253

    Article  Google Scholar 

  43. Hooshmand A, Aminfar M H, Asghari E, Ahmadi H. Mechanical and physical characterization of Tabriz Marls, Iran. Geotechnical and Geological Engineering, 2012, 30(1): 219–232

    Article  Google Scholar 

  44. Li L, Meng Q, Wang S, Li G, Tang C. A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation. Acta Geotechnica, 2013, 8(6): 597–618

    Article  Google Scholar 

  45. Liu H, Bu Y, Nazari A, Sanjayan J G, Shen Z. Low elastic modulus and expansive well cement system: The application of gypsum microsphere. Construction & Building Materials, 2016, 106: 27–34

    Article  Google Scholar 

  46. Turichshev A, Hadjigeorgiou J. Triaxial compression experiments on intact veined andesite. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 179–193

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Geological Survey & Mineral Exploration of Iran for providing the geological map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooya Zakian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakian, P., Asadi Hayeh, H. Finite element simulation for elastic dislocation of the North-Tehran fault: The effects of geologic layering and slip distribution for the segment located in Karaj. Front. Struct. Civ. Eng. 16, 533–549 (2022). https://doi.org/10.1007/s11709-022-0802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-022-0802-8

Keywords

Navigation