Skip to main content
Log in

NOx removal by non-thermal plasma reduction: experimental and theoretical investigations

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Green and efficient NOx removal at low temperature is still desired. NOx removal via non-thermal plasma (NTP) reduction is one of such technique. This work presents the experimental and theoretical study on the NOx removal via NTP reduction (NTPRD) in dielectric barrier discharge reactor (DBD). The effect of O2 molar fraction on NOx species in the outlet of DBD, and effects of NH3/NO molar ratio and discharge power of DBD on NOx removal efficiency are investigated. Results indicate that anaerobic condition and higher discharge power is beneficial to direct removal of NOx, and the NOx removal efficiency can be up to 98.5% under the optimal operating conditions. It is also found that adding NH3 is favorable for the reduction of NOx to N2 at lower discharge power. In addition, the NOx removal mechanism and energy consumption analysis for the NTPRD process are also studied. It is found that the reduced active species (N*, N, N+, N2*, NH2+, etc.) generated in the NTPRD process play important roles for the reduction of NOx to N2. Our work paves a novel pathway for NOx removal from anaerobic gas in industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu Q, Wang H, Liu T, Xiao L, Jiang X, Zheng X. High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. Environmental Science & Technology, 2012, 46(4): 2337–2344

    Article  CAS  Google Scholar 

  2. Resitoglu I A, Keskin A. Hydrogen applications in selective catalytic reduction of NOx emissions from diesel engines. International Journal of Hydrogen Energy, 2017, 42(36): 23389–23394

    Article  CAS  Google Scholar 

  3. Gholami F, Tomas M, Gholami Z, Vakili M. Technologies for the nitrogen oxides reduction from flue gas: a review. Science of the Total Environment, 2020, 714: 136712.1–136712.26

    Article  Google Scholar 

  4. Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M. The role of non-thermal plasma technique in NOx treatment: a review. Renewable & Sustainable Energy Reviews, 2014, 40: 886–901

    Article  CAS  Google Scholar 

  5. Liang C, Cai Y, Li K, Luo Y, Qian Z, Chu G W, Chen J F. Using dielectric barrier discharge and rotating packed bed reactor for NOx removal. Separation and Purification Technology, 2020, 235: 116141

    Article  CAS  Google Scholar 

  6. Ilmasani R F, Woo J W, Creaser D, Olsson L. Influencing the NOx stability by metal oxide addition to Pd/BEA for passive NOx adsorbers. Industrial & Engineering Chemistry Research, 2020, 59(21): 9830–9840

    Article  CAS  Google Scholar 

  7. Srivastava R K, Hall R E, Khan S, Culligan K, Lani B W. Nitrogen oxides emission control options for coal-fired electric utility boilers. Journal of the Air & Waste Management Association, 2005, 55(9): 1367–1388

    Article  CAS  Google Scholar 

  8. Li D, Tang X, Yi H H, Ma D, Gao F. NOx removal over modified carbon molecular sieve catalysts using a combined adsorptiondischarge plasma catalytic process. Industrial & Engineering Chemistry Research, 2015, 54(37): 9097–9103

    Article  CAS  Google Scholar 

  9. Zhang C, Gao Y, Yan Q, Wang Q. Fundamental investigation on layered double hydroxides derived mixed metal oxides for selective catalytic reduction of NOx by H2. Catalysis Today, 2020, 355: 450–457

    Article  CAS  Google Scholar 

  10. Seneque M, Can F, Duprez D, Courtois X. NOx selective catalytic reduction (NOx-SCR) by urea: evidence of the reactivity of HNCO, including a specific reaction pathway for NOx reduction involving NO + NO2. ACS Catalysis, 2016, 6(7): 4064–4067

    Article  CAS  Google Scholar 

  11. Ma S M, Zhao Y C, Yang J P, Zhang S B, Zhang J Y, Zheng C G. Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renewable & Sustainable Energy Reviews, 2017, 67: 791–810

    Article  CAS  Google Scholar 

  12. Harling A M, Glover D J, Whitehead J C, Zhang K. Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges. Environmental Science & Technology, 2008, 42(12): 4546–4550

    Article  CAS  Google Scholar 

  13. Chen L W, Meng Y D, Shen J, Shu X S, Fang S D, Xiong X Y. Coal pyrolysis to acetylene using dc hydrogen plasma torch: effects of system variables on acetylene concentration. Journal of Physics. D, Applied Physics, 2009, 42(5): 055505

    Article  Google Scholar 

  14. Ma J, Su B G, Wen G D, Ren Q L, Yang Y W, Yang Q W, Xing H B. Kinetic modeling and experimental validation of the pyrolysis of propane in hydrogen plasma. International Journal of Hydrogen Energy, 2016, 41(48): 22689–22697

    Article  CAS  Google Scholar 

  15. Wang B, Wang X, Zhang B. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2. Frontiers of Chemical Science and Engineering, 2021, 15(3): 687–697

    Article  CAS  Google Scholar 

  16. Kwon Y K, Han D H. Microwave effect in the simultaneous removal of NOx and SO2 under electron beam irradiation and kinetic investigation of NOx removal rate. Industrial & Engineering Chemistry Research, 2010, 49(17): 8147–8156

    Article  CAS  Google Scholar 

  17. Park J H, Ahn J W, Kim K H, Son Y S. Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas. Chemical Engineering Journal, 2019, 355: 351–366

    Article  CAS  Google Scholar 

  18. Chang J S, Masuda S. Mechanism of pulse corona induced plasma chemical process for removal of NOx and SO2 from combustion gases. In IEEE Industry Applications Society Meeting, 1988, 2: 1628–1635

    Google Scholar 

  19. Lee Y H, Chung J W, Choi Y R, Chung J S, Cho M H, Namkung W. NOx removal characteristics in plasma plus catalyst hybrid process. Plasma Chemistry and Plasma Processing, 2004, 24(2): 137–154

    Article  CAS  Google Scholar 

  20. Zhao G B, Garikipati S V B, Hu X D, Argyle M D, Radosz M. Effect of reactor configuration on nitric oxide conversion in nitrogen plasma. AIChE Journal, 2005, 51(6): 1813–1821

    Article  CAS  Google Scholar 

  21. Khani M R, Barzideh Pour E, Rashnoo S, Tu X, Ghobadian B, Shokri B, Khadem A, Hosseini S I. Real diesel engine exhaust emission control: indirect non-thermal plasma and comparison to direct plasma for NOx, THC, CO, and CO2. Journal of Environmental Health Science & Engineering, 2020, 18(2): 743–754

    Article  Google Scholar 

  22. Pan H, Qiang Y. Promotion of non-thermal plasma on catalytic reduction of NOx by C3H8 over Co/BEA catalyst at low temperature. Plasma Chemistry and Plasma Processing, 2014, 34(4): 811–824

    Article  CAS  Google Scholar 

  23. Yu G, Yan Z, Ye D, Wang X L, Gu P, Xu Y Q. A Study on the NO removal mechanism through the plasma reaction of NO/N2 system. Journal of Engineering Thermophysics, 2003, 24(02): 354–356

    CAS  Google Scholar 

  24. Stere C E, Adress W, Burch R, Chansai S, Goguet A, Graham W G, De Rosa F, Palma V, Hardacre C. Ambient temperature hydrocarbon selective catalytic reduction of NOx using atmospheric pressure nonthermal plasma activation of a Ag/Al2O3 catalyst. ACS Catalysis, 2014, 4(2): 666–673

    Article  CAS  Google Scholar 

  25. Wang H, Cao Y Y, Chen Z W, Yu Q Q, Wu S J. High-efficiency removal of NOx over natural mordenite using an enhanced plasma-catalytic process at ambient temperature. Fuel, 2018, 224: 323–330

    Article  CAS  Google Scholar 

  26. Gong X L, Zhao R, Qin J Q, Wang H M, Wang D. Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature. Chemical Engineering Journal, 2019, 358: 291–298

    Article  CAS  Google Scholar 

  27. Penetrante B M, Hsiao M C, Merritt B T, Vogtlin G E, Wallman P H. Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N2. IEEE Transactions on Plasma Science, 1995, 23(4): 679–687

    Article  CAS  Google Scholar 

  28. Mätzing H. Chemical kinetics of flue gas cleaning by irradiation with electrons. Advances in Chemical Physics, 2007, 80: 315–402

    Google Scholar 

  29. Willis C, Boyd A W. Excitation in the radiation chemistry of inorganic gases. International Journal for Radiation Physics and Chemistry, 1976, 8(1–2): 71–111

    Article  CAS  Google Scholar 

  30. Lowke J J, Morrow R. Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators. IEEE Transactions on Plasma Science, 1995, 23(4): 661–671

    Article  CAS  Google Scholar 

  31. Willis C, Boyd A W, Young M J, Armstrong D A. Radiation chemistry of gaseous oxygen: experimental and calculated yields. Canadian Journal of Chemistry, 1970, 48(10): 1505–1514

    Article  CAS  Google Scholar 

  32. Penetrante B M, Hsiao M C, Merritt B T, Vogtlin G E, Wallman P H, Kuthi A, Burkhart C P, Bayless J R. Electron-impact dissociation of molecular nitrogen in atmospheric-pressure nonthermal plasma reactors. Applied Physics Letters, 1995, 67(21): 3096–3098

    Article  CAS  Google Scholar 

  33. Herron J T, Green D S. Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chemistry and Plasma Processing, 2001, 21(3): 459–481

    Article  CAS  Google Scholar 

  34. Zhao G B, Hu X D, Argyle M D, Radosz M N. Atom radicals and N2(A3u+) found to be responsible for nitrogen oxides conversion in nonthermal nitrogen plasma. Industrial & Engineering Chemistry Research, 2004, 43(17): 5077–5088

    Article  CAS  Google Scholar 

  35. Michalski G, Jost R, Sugny D, Joyeux M, Thiemens M. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules. Journal of Chemical Physics, 2004, 121(15): 7153–7161

    Article  CAS  PubMed  Google Scholar 

  36. Tang X, Hou Y, Ng C Y, Ruscic B. Pulsed field-ionization photoelectron-photoion coincidence study of the process N2 + hv → N+ + N + e: bond dissociation energies of N2 and N2+. Journal of Chemical Physics, 2005, 123(7): 074330

    Article  PubMed  Google Scholar 

  37. Mansouri F, Khavanin A, Jafari A J, Asilian H, Ghomi H R, Mousavi S M. Energy efficiency improvement in nitric oxide reduction by packed DBD plasma: optimization and modeling using response surface methodology (RSM). Environmental Science and Pollution Research International, 2020, 27(14): 16100–16109

    Article  CAS  PubMed  Google Scholar 

  38. Chang J S, Looy P C, Nagai K, Yoshioka T, Maezawa A. Pilot plant tests of a corona discharge-electron beam hybrid combustion flue gas cleaning system. IEEE Transactions on Industry Applications, 1994, 21(1): 131–137

    Google Scholar 

  39. Penetrante B M, Hsiao M C, Merritt B T, Vogtlin G E, Wallman P H, Neiger M, Wolf O, Hammer T, Broer S. Pulsed corona and dielectric-barrier discharge processing of NO in N2. Applied Physics Letters, 1996, 68(26): 3719–3721

    Article  CAS  Google Scholar 

  40. Mok Y S, Chang M N, Cho M H, Nam I S. Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes. IEEE Transactions on Plasma Science, 2002, 30(1): 408–416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant Nos. 21878009 and 21725601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Wen Chu or Bao-Chang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, JW., Zhang, J. et al. NOx removal by non-thermal plasma reduction: experimental and theoretical investigations. Front. Chem. Sci. Eng. 16, 1476–1484 (2022). https://doi.org/10.1007/s11705-022-2165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2165-z

Keywords

Navigation