Skip to main content
Log in

Nickel-based metal—organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Metal—organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal—organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue Y J, Shen M X, Zeng S H, Zhang W, Hao L Y, Yang L, Song P A. A novel strategy for enhancing the flame resistance, dynamic mechanical and the thermal degradation properties of epoxy nanocomposites. Materials Research Express, 2019, 6(12): 125003

    Article  CAS  Google Scholar 

  2. Azeez A A, Rhee K Y, Park S J, Hui D. Epoxy clay nanocomposites-processing, properties and applications: a review. Composites. Part B, Engineering, 2013, 45(1): 308–320

    Article  CAS  Google Scholar 

  3. Wetzel B, Haupert F, Zhang M Q. Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 2003, 63(14): 2055–2067

    Article  CAS  Google Scholar 

  4. Chen J S, Yang J, Chen B B, Liu S, Dong J Z, Li C S. Large-scale synthesis of NbSe2 nanosheets and their use as nanofillers for improving the tribological properties of epoxy coatings. Surface and Coatings Technology, 2016, 305: 23–28

    Article  CAS  Google Scholar 

  5. Wu F, Zhao W J, Chen H, Zeng Z X, Wu X D, Xue Q J. Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide. Surface and Interface Analysis, 2017, 49(2): 85–92

    Article  CAS  Google Scholar 

  6. Song J, Dai Z D, Li J Y, Zhao H C, Wang L P. Silane coupling agent modified BN-OH as reinforcing filler for epoxy nanocomposite. High Performance Polymers, 2019, 31(1): 116–123

    Article  CAS  Google Scholar 

  7. Mohan T P, Kanny K. Tribological studies of nanoclay filled epoxy hybrid laminates. Tribology Transactions, 2017, 60(4): 681–692

    Article  CAS  Google Scholar 

  8. Qiu S L, Hu Y X, Shi Y Q, Hou Y B, Kan Y C, Chu F K, Sheng H, Yuen R K K, Xing W Y. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites. Part A, Applied Science and Manufacturing, 2018, 114: 407–417

    Article  CAS  Google Scholar 

  9. Gupta S, Hammann T, Johnson R, Riyad M F. Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribology Transactions, 2015, 58(3): 560–566

    Article  CAS  Google Scholar 

  10. Bian Z F, Kawi S. Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339: 3–23

    Article  CAS  Google Scholar 

  11. Yang J N, Li Z Y, Xu Y X, Nie S B, Liu Y. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27(9): 274

    Article  CAS  Google Scholar 

  12. Nie S B, Jin D, Xu Y X, Han C, Dong X, Yang J N. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9(5): 10189–10197

    Article  CAS  Google Scholar 

  13. Yang J N, Feng X S, Nie S B, Xu Y X, Li Z Y. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16(4): 484–497

    Article  CAS  Google Scholar 

  14. Shi X W, Dai X, Cao Y, Li J W, Huo C G, Wang X L. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Industrial & Engineering Chemistry Research, 2017, 56(14): 3887–3894

    Article  CAS  Google Scholar 

  15. Nabipour H, Wang X, Song L, Hu Y. Metal-organic frameworks for flame retardant polymers application: a critical review. Composites. Part A, Applied Science and Manufacturing, 2020, 139:106113

  16. Zhang L, Chen S Q, Pan Y T, Zhang S D, Nie S B, Wei P, Zhang X Q, Wang R, Wang D Y. Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9272–9280

    Article  CAS  Google Scholar 

  17. Yang J N, Xu Y X, Su C, Nie S B, Li Z Y. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1281–1295

    Article  CAS  Google Scholar 

  18. Yaghi O M, Li H, Groy T L. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. Journal of the American Chemical Society, 1996, 118(38): 9096–9101

    Article  CAS  Google Scholar 

  19. Kang L, Sun S X, Kong L B, Lang J W, Luo Y C. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chemical Letters, 2014, 25(6): 957–961

    Article  CAS  Google Scholar 

  20. Burattin P, Che M, Louis C. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101(36): 7060–7074

    Article  CAS  Google Scholar 

  21. Fukushima Y, Tani M. Synthesis of 2:1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate. Bulletin of the Chemical Society of Japan, 1996, 69(12): 3667–3671

    Article  CAS  Google Scholar 

  22. Liu L, Zhu M H, Xu X D, Li X, Ma Z W, Jiang Z, Pich A, Wang H, Song P A. Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Advanced Materials, 2021, 33(51): 2105829

    Article  CAS  Google Scholar 

  23. Xu X D, Li L J, Seraji S M, Liu L, Jiang Z, Xu Z G, Li X, Zhao S, Wang H, Song P A. Bioinspired, strong, and tough nanostructured poly(vinyl alcohol)/inositol composites: how hydrogen-bond cross-linking works? Macromolecules, 2021, 54(20): 9510–9521

    Article  CAS  Google Scholar 

  24. Ohtsuka K, Koga J, Suda M, Ono M. Fabrication of metal-layer (nickel) silicate microcomposite particles by a surface-nucleated precipitation route. Journal of the American Ceramic Society, 1989, 72(10): 1924–1930

    Article  CAS  Google Scholar 

  25. Gérard P, Herbillon A. Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series. Clays and Clay Minerals, 1983, 31(2): 143–151

    Article  Google Scholar 

  26. da Fonseca M G, Silva C R, Barone J S, Airoldi C. Layered hybrid nickel phyllosilicates and reactivity of the gallery space. Journal of Materials Chemistry, 2000, 10(3): 789–795

    Article  CAS  Google Scholar 

  27. Hang X X, Xue Y D, Cheng Y, Du M, Du L T, Pang H. From Co-MOF to CoNi-MOF to Ni-MOF: a facile synthesis of 1D micro/nanomaterials. Inorganic Chemistry, 2021, 60(17): 13168–13176

    Article  CAS  PubMed  Google Scholar 

  28. Liang J B, Ma R Z, Iyi N B O, Ebina Y, Takada K, Sasaki T. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: a route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chemistry of Materials, 2010, 22(2): 371–378

    Article  CAS  Google Scholar 

  29. Rong Q, Long L L, Zhang X, Huang Y X, Yu H Q. Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Applied Energy, 2015, 153: 63–69

    Article  CAS  Google Scholar 

  30. Qiu C, Jiang J, Ai L H. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8(1): 945–951

    Article  CAS  Google Scholar 

  31. Wang K, Wu J S, Ye L, Zeng H M. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Composites. Part A, Applied Science and Manufacturing, 2003, 34(12): 1199–1205

    Article  Google Scholar 

  32. Chan M L, Lau K T, Wong T T, Ho M P, Hui D. Mechanism of reinforcement in a nanoclay/polymer composite. Composites. Part B, Engineering, 2011, 42(6): 1708–1712

    Article  Google Scholar 

  33. Wu C L, Zhang M Q, Rong M Z, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology, 2002, 62(10): 1327–1340

    Article  CAS  Google Scholar 

  34. Ma X Y, Zhang W D. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation & Stability, 2009, 94(7): 1103–1109

    Article  CAS  Google Scholar 

  35. Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites. Macromolecules, 2010, 43(16): 6515–6530

    Article  CAS  Google Scholar 

  36. Ma Z W, Liu X C, Xu X D, Liu L, Yu B, Maluk C, Huang G B, Wang H, Song P A. Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano, 2021, 15(7): 11667–11680

    Article  CAS  Google Scholar 

  37. Liu L, Zhu M H, Shi Y Q, Xu X D, Ma Z W, Yu B, Fu S Y, Huang G B, Wang H, Song P A. Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chemical Engineering Journal, 2021, 424: 130338

    Article  CAS  Google Scholar 

  38. Lou G B, Ma Z W, Dai J F, Bai Z C, Fu S Y, Huo S Q, Qian L J, Song P A. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustainable Chemistry & Engineering, 2021, 9(40): 13595–13605

    Article  CAS  Google Scholar 

  39. Liu L, Zhu M H, Ma Z W, Xu X D, Seraji S M, Yu B, Sun Z Q, Wang H, Song P A. A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430: 132712

    Article  CAS  Google Scholar 

  40. Seraji S M, Song P A, Varley R J, Bourbigot S, Voice D, Wang H. Fire-retardant unsaturated polyester thermosets: the state-of-the-art, challenges and opportunities. Chemical Engineering Journal, 2022, 430: 132785

    Article  CAS  Google Scholar 

  41. Ma H Y, Song P A, Fang Z P. Flame retarded polymer nanocomposites: development, trend and future perspective. Science China. Chemistry, 2011, 54(2): 302–313

    Article  CAS  Google Scholar 

  42. Yang J N, Liu Y, Xu Y X, Nie S B, Li Z Y. Property investigations of epoxy composites filled by nickel phyllosilicate-decorated graphene oxide. Journal of Materials Science, 2020, 55(24): 10593–10610

    Article  CAS  Google Scholar 

  43. Myshkin N, Kovalev A. Adhesion and surface forces in polymer tribology—a review. Friction, 2018, 6(2): 143–155

    Article  Google Scholar 

  44. Dasari A, Yu Z Z, Mai Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering R: Reports, 2009, 63(2): 31–80

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Key research and development project in Anhui Province (Grant No. 2022i01020016), the National Natural Science Foundation of China (Grant No. 51775001), the Anhui Province Natural Science Foundation (Grant Nos. 1908085J20, 2008085QE269), the University Synergy Innovation Program of Anhui Province (Grant Nos. GXXT-2019-027, GXXT-2020-057), the Natural Science Research Project of Universities in Anhui Province (Grant No. KJ2020A0326) and the Leading Talents Project in Colleges and Universities of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanglong Dai or Shibin Nie.

Electronic Supplementary Material

11705_2022_2168_MOESM1_ESM.pdf

Nickel-based metal—organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Dai, G., Nie, S. et al. Nickel-based metal—organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites. Front. Chem. Sci. Eng. 16, 1493–1504 (2022). https://doi.org/10.1007/s11705-022-2168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2168-9

Keywords

Navigation