Skip to main content

Advertisement

Log in

Analysis of a microfluidic device for diffusion coefficient determination of high molecular weight solutes detectable in the visible spectrum

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We developed a procedure to measure diffusion coefficients using microfluidic devices that contributes to the transport analysis of high molecular weight solutes with low diffusion coefficient. This procedure allows a quick determination of diffusion coefficients and a precise evaluation of measurement errors. Making use of color variation of a pH indicator, we determined its diffusion coefficient in its own solvent (water). The value obtained was compared with previously published ones and was found to be similar to those cited. The microfluidic device has a serpentine-shaped channel that allows monitoring the solution evolution in different regions of the path in a single visual field without the need to move the camera or the microchip. This kind of device also allows the spatial and temporal tracking of the diffusion process. The solution color intensity is used to determine solute concentration; therefore, this method presents an advantage compared to those based on fluorescence detection. A complete analysis of the diffusive behavior along the channel path was performed in order to test the accuracy of these kinds of methodologies. This analysis can be used with similar devices, and the techniques employed for diffusion analysis can be applied to a µTAS-type microfluidic platform, allowing obtain variations of the diffusion coefficient as a function of time due to variations in external factors, e.g., temperature, etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Alrifaiy, O.A. Lindahl, K. Ramser, Polymers 4, 1349 (2012)

    Article  Google Scholar 

  2. N. Kovachev, A. Canals, A. Escarpa, Anal. Chem. 82(7), 2925 (2010)

    Article  Google Scholar 

  3. C. Lattermann, J. Büchs, Curr. Opin. Biotechnol. 35, 1 (2015)

    Article  Google Scholar 

  4. S.A. Khan, A. Gunther, M.A. Schmidt, K.F. Jensen, Langmuir 20, 8604 (2004)

    Article  Google Scholar 

  5. I. Tahirbegi, J. Ehgartner, P. Sulzer, S. Zieger, A. Kasjanow, M. Paradiso, M. Strobl, D. Bouwes, T. Mayr, Biosens. Bioelectron. 88, 188 (2017)

    Article  Google Scholar 

  6. A. Mulchandani, P. Mulchandani, S. Chauhan, L. Kaneva, W. Chen, Electro-Analysis 10, 733 (1998)

    Article  Google Scholar 

  7. Y. Lei, P. Mulchandani, J. Wang, W. Chen, A. Mulchandani, Environ. Sci. Technol. 39, 8853 (2005)

    Article  ADS  Google Scholar 

  8. P. Mulchandani, W. Chen, A. Mulchandani, Anal. Chim. Acta 568(1–2), 217 (2006)

    Article  Google Scholar 

  9. C. Chouteau, S. Dzyadevych, C. Durrieu, J.M. Chovelon, Biosen. Bioelectron. 21, 273 (2005)

    Article  Google Scholar 

  10. V.M. Freytes, M. Rosen, A. D’Onofrio, Chaos 28, 103104 (2018)

    Article  ADS  Google Scholar 

  11. R. Outeda, C. El Hasi, A. D’Onofrio, A. Zalts, Chaos 24, 013135 (2014)

    Article  ADS  Google Scholar 

  12. L. Binda, C. El Hasi, A. Zalts, A. D’Onofrio, Chaos 27, 053111 (2017)

    Article  ADS  Google Scholar 

  13. L. Binda, D. Fernandez, C. El Hasi, A. Zalts, A. D’Onofrio, Chaos 28, 013107 (2018)

    Article  ADS  Google Scholar 

  14. C. Thomas, L. Lemaigre, A. Zalts, A. D’Onofrio, A. De Wit, Int. J. Greenhouse Gas Control 42, 525 (2015)

    Article  Google Scholar 

  15. S. Kuster, L.A. Riolfo, A. Zalts, C. El Hasi, C. Almarcha, P.M.J. Trevelyan, A. De Wit, A. D’Onofrio, Phys. Chem. Chem. Phys. 13, 17295 (2011)

    Article  Google Scholar 

  16. C. Almarcha, P.M.J. Trevelyan, L.A. Riolfo, A. Zalts, C. El Hasi, A. D’Onofrio, A. De Wit, J. Phys. Chem. Lett. 1, 752 (2010)

    Article  Google Scholar 

  17. A. Zalts, C. El Hasi, D. Rubio, A. Ureña, A. D’Onofrio, Rapid Commun. Phys. Rev. E 77, 015304 (2008)

    Article  ADS  Google Scholar 

  18. V.M. Freytes, A. D’Onofrio, M. Rosen, C. Allain, J.P. Hulin, Phys. A 290, 286 (2001)

    Article  MathSciNet  Google Scholar 

  19. A. D’Onofrio, V.M. Freytes, M. Rosen, C. Allain, J.P. Hulin, Eur. Phys. J. E 7, 251 (2002)

    Google Scholar 

  20. D. Levitan, A. D’Onofrio, Chaos 22, 037107 (2012)

    Article  ADS  Google Scholar 

  21. L. Macias, D. Müller, A. D’Onofrio, Phys. Rev. Lett. 102, 094501 (2009)

    Article  ADS  Google Scholar 

  22. M. Abolhasani, M. Singh, E. Kumacheva, A. Günther, Lab Chip 12, 1611 (2012)

    Article  Google Scholar 

  23. M. Abolhasani, PhD thesis, University of Toronto (2014)

  24. A.E. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager, Anal. Chem. 71, 5340 (1999)

    Article  Google Scholar 

  25. A.E. Kamholz, E.A. Schilling, P. Yager, Biophys. J. 80, 167 (2001)

    Google Scholar 

  26. A.E. Kamholz, P. Yager, Biophys. J. 80, 155 (2001)

    Article  ADS  Google Scholar 

  27. E. Häusler, P. Domagalski, M. Ottens, A. Bardow, Chem. Eng. Sci. 72, 45 (2012)

    Article  Google Scholar 

  28. A. Hatch, A.E. Kamholz, B.H. Weigl, P. Yager, Nat. Biotechnol. 19(5), 461 (2001)

    Article  Google Scholar 

  29. P. Galambos, F.K. Forster, B.H. Weigl, In: Proceedings of International Solid State Sensors and Actuators Conference 1997 (Transducers '97) p. 535

  30. C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Talanta 56, 365 (2002)

    Article  Google Scholar 

  31. N. Miložič, M. Lubej, U. Novak, P. Žnidaršič-Plazl, L. Plazl, Chem. Biochem. Eng. Q. 28(2), 215 (2014)

    Article  Google Scholar 

  32. R. Ismagilov, A. Stroock, P. Kenis, G. Whitesides, H. Stone, App. Phys. Lett. 76, 2376 (2000)

    Article  ADS  Google Scholar 

  33. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov, Appl. Phys. Lett. 83(12), 4664 (2003)

    Article  ADS  Google Scholar 

  34. V. Mengeaud, J. Josserand, H. Girault, Anal. Chem. 74(16), 4279 (2002)

    Article  Google Scholar 

  35. N.E. Escofet, Medidas de coeficiente de difusión por RMN: metodología, aspectos experimentales y fundamentos (Universitat Autònoma de Barcelona, 2011)

Download references

Acknowledgements

We are grateful to Prof. J. P. Hulin, Laboratoire FAST, Université Paris-Saclay, for illuminating discussions and suggestions. This work was financed by UBACYT program (Universidad de Buenos Aires, Argentina) and PIP program (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D’Onofrio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binda, L., Bolado, M., D’Onofrio, A. et al. Analysis of a microfluidic device for diffusion coefficient determination of high molecular weight solutes detectable in the visible spectrum. Eur. Phys. J. E 45, 56 (2022). https://doi.org/10.1140/epje/s10189-022-00211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00211-4

Navigation