Skip to main content
Log in

Pseudo-homogeneous kinetic modeling of dioctyl terephthalate (DOTP) production by esterification of terephthalic acid and 2-ethylhexanol over tetrabutyl titanate catalyst

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As a green plasticizer, the industrial production of dioctyl terephthalate (DOTP) is still facing the problem of high energy consumption. To optimize the production process and reactor, it is essential to understand the kinetic behavior of reaction system. In this work, the two-step consecutive esterification of solid terephthalic acid (PTA) and 2-ethylhexanol (2-EH) catalyzed by tetrabutyl titanate was studied. First, the equilibrium constants and enthalpies of the two-step reaction were experimentally determined and validated by the group contribution methods. Then, a pseudohomogeneous kinetic model was developed, and the reaction order of PTA was corrected to reflect its solid phase characteristic. Non-isothermal kinetic experiments were carried out under different initial feed molar ratios and catalyst concentrations, and the kinetic parameters in the model were estimated by mathematical regression. The model predicted data agreed well with the experimental data. Finally, the analyses of reaction rate showed that the first-step reaction was the rate-controlling step of the whole esterification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-EH:

2-ethylhexanol

PTA:

terephthalic acid

DOTP:

dioctyl terephthalate

MEHTP:

mono-2-ethylhexyl terephthalate

Mi :

molar mass of component i [g·mol−1]

Ci :

concentration of component i [mol·L−1]

C 0i :

initial concentration of component i [mol·L−1]

C eqi :

equilibrium molar concentration of component i [mol·L−1]

Cp :

constant pressure heat capacity [J·mol−1]

Vsys :

volume of reaction system [L]

R:

gas constant

K:

equilibrium constant of reaction

ΔHr :

enthalpy of reaction [kJ·mol−1]

ΔH 0r :

standard enthalpy of reaction [kJ·mol−1]

ΔH 0f :

standard enthalpy of formation [kJ·mol−1]

ΔHvap,T :

enthalpy of vaporization at temperature T [kJ·mol−1]

ΔHvap, b :

enthalpy of vaporization at the normal boiling point [kJ·mol−1]

T:

absolute temperature [K]

Tref :

reference temperature [K]

Tc :

critical temperature [K]

Tb :

boiling point temperature [K]

Ea :

activation energy of reaction [kJ·mol−1]

t:

reaction time [min]

r:

reaction rate [mol−1·L−1·min−1]

r0 :

initial reaction rate [mol−1·L−1·min−1]

k:

forward reaction rate constants [mol−1.37·L1.37·min−1]

kref :

forward reaction rate constant at the reference temperature [mol−1.37·L1.37·min−1]

ml :

mass of liquid in the system [g]

n 0i :

initial molar number of component i [mol]

υ i :

stoichiometric coefficient of component i

α :

reaction order of PTA

ω i :

mass fraction of component i

xDOTP :

mole fraction of DOTP

References

  1. M. Park, I. Choi, S. Lee, S. Hong, A. Kim, J. Shin, H C. Kang and Y. W. Kim, J. Ind. Eng. Chem., 88, 148 (2020).

    Article  CAS  Google Scholar 

  2. Ceresana’s latest report details growth and change for global plasticizers market, Addit. Polym, 11 (2019).

  3. J. L. Lyche, A. C. Gutleb, Å. Bergman, G. S. Eriksen, A. J. Murk, E. Ropstad, M. Saunders and J. U. Skaare, J. Toxicol. Environ. Heal. — Part B Crit. Rev., 12, 225 (2009).

    Article  CAS  Google Scholar 

  4. S. Net, R. Sempéré, A. Delmont, A. Paluselli and B. Ouddane, Environ. Sci. Technol., 49, 4019 (2015).

    Article  CAS  Google Scholar 

  5. Y. F. Miao, R. H. Wang, C. Lu, J. P. Zhao and Q. H. Deng, Environ. Sci. Pollut. Res., 24, 312 (2017).

    Article  CAS  Google Scholar 

  6. H. C. Erythropel, T. Brown, M. Maric, J. A. Nicell, D. G. Cooper and R. L. Leask, Chemosphere, 134, 106 (2015).

    Article  CAS  Google Scholar 

  7. V. A. Küçük, M. Uğur, H. Korueu, B. Şimşek, T. Uygunoğlu and M. M. Koeakerim, Constr. Build. Mater., 263, 120905 (2020).

    Article  Google Scholar 

  8. BASF begins production of dioetyl terephthalate at Texas facility, Focus Catal, 6 (2017).

  9. Oxea aims to become major European supplier of DOTP plastieizer, Addit. Polym., 7 (2018).

  10. A. Jacoby and Z. Adams, Addit. Polym., 8 (2019).

  11. K. Du, M. L. Lian, Z. F. Fan and Y. Li, Appl. Mech. Mater., 541, 95 (2014).

    Article  Google Scholar 

  12. J. Y. Ding, J. Y. Chen, Y. M. Ji, P. Ni, Z. L. Li and L. Y. Xing, J. Anal. Appl. Pyrolysis, 106, 99 (2014).

    Article  CAS  Google Scholar 

  13. S. T. Firdovsi, M. Yagoub and A. E. Parvin, Chinese J. Chem., 25, 246 (2007).

    Article  CAS  Google Scholar 

  14. P. P. Jiang, Q. F. Zhang, W. Gao, P. B. Zhang, Y. M. Dong, Y. Leng, C. C. Sun, Y. H. Liu and Y. B. Chen, Plast. Addit., 137, 9 (2019).

    Google Scholar 

  15. D. Celante, L. O. Diehl, L. N. Brondani, C. A. Bizzi and F. de Castilhos, J. Chem. Eng. Data, 66, 3512 (2021).

    Article  CAS  Google Scholar 

  16. W. Y. Tian, Z. X. Zeng, W. L. Xue, Y. B. Li and T. Y. Zhang, Chinese J. Chem. Eng., 18, 391 (2010).

    Article  CAS  Google Scholar 

  17. S. C. Li, Z. H. Xi and L. Zhao, Chem. React. Eng. Technol., 5, 385 (2015).

    Google Scholar 

  18. L. W. Chen, J. M. Xu, W. L. Xue and Z. X. Zeng, Korean J. Chem. Eng., 35, 82 (2018).

    Article  CAS  Google Scholar 

  19. X. J. Liang, F. J. Wu, Q. L. Xie, Z. Y. Wu, J. J. Cai, C. W. Zheng, J. H. Fu and Y. Nie, Chinese J. Chem. Eng., 44, 41 (2022).

    Article  Google Scholar 

  20. J. C. Jiang, P. Liu, S. Y. Chen, G. D. Feng, J. P. Gong and J. M. Xu, CN Patent, 104496819B (2016).

  21. J. G. Wei, D. Z. Liu, P. Q. Sun and S. H. Sun, J. Chem. Eng. Chinese Univ., 20, 665 (2006).

    Article  CAS  Google Scholar 

  22. K. Li, J. C. Jiang and X. A. Nie, Spec. Petrochem., 30, 43 (2013).

    Google Scholar 

  23. S. Satoh and T. Sogabe, Pap. Inst. Phys. Chem. Res., 38, 246 (1941).

    Google Scholar 

  24. J. T. Jebbes, Acta Chem. Scand, 14, 180 (1960).

    Article  Google Scholar 

  25. K. Schwabe and W. Wagner, Z. Electrochem, 65, 812 (1961).

    CAS  Google Scholar 

  26. J. D. Cox, D. D. Wagman and V. A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp, New York (1984).

  27. C. L. Yaws, The YAWS handbook of thermodynamic properties for hydrocarbons and chemicals, Gulf Pub Co, Houston (2006).

    Google Scholar 

  28. V. Růžička and E. S. Domalski, J. Phys. Chem. Ref. Data, 22, 597 (1993).

    Article  Google Scholar 

  29. S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O’neal, A. S. Rodgers, R. Shaw and R. Walsh, Chem. Rev., 69, 279 (1969).

    Article  CAS  Google Scholar 

  30. R. E. Thek and L. I. Stiel, AIChE J., 12, 599 (1966).

    Article  CAS  Google Scholar 

  31. P. S. Ma, W. Xu, Y. S. Liu and Y. C. Ruan, Petrochem. Technol., 21, 613 (1992).

    CAS  Google Scholar 

  32. J. Marrero-Morejón and E. Pardillo-Fontdevila, AIChE J., 45, 615 (1999).

    Article  Google Scholar 

  33. K. N. P. Rani, T. S. V. R. Neeharika, T. P. Kumar, B. Satyavathi, C. Sailu and R. B. N. Prasad, J. Taiwan Inst. Chem. Eng., 55, 12 (2015).

    Article  CAS  Google Scholar 

  34. D. Painer and S. Lux, Ind. Eng. Chem. Res., 58, 1133 (2019).

    Article  CAS  Google Scholar 

  35. H. Patel, G. Feix and R. Schomäeker, Macromol. React. Eng., 1, 502 (2007).

    Article  CAS  Google Scholar 

  36. K. Okitsu, B. Nanzai, K. Kawasaki, N. Takenaka and H. Bandow, Ultrason. Sonochem., 16, 155 (2009).

    Article  CAS  Google Scholar 

  37. A. W. M. Braam and B. J. R. Scholtens, J. Appl. Polym. Sci., 50, 2007 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Nie.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1161_MOESM1_ESM.pdf

Pseudo-homogeneous kinetic modeling of dioctyl terephthalate (DOTP) production by esterification of terephthalic acid and 2-ethylhexanol over tetrabutyl titanate catalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Cai, J., Mao, X. et al. Pseudo-homogeneous kinetic modeling of dioctyl terephthalate (DOTP) production by esterification of terephthalic acid and 2-ethylhexanol over tetrabutyl titanate catalyst. Korean J. Chem. Eng. 39, 2324–2333 (2022). https://doi.org/10.1007/s11814-022-1161-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1161-9

Keywords

Navigation