Skip to main content
Log in

Poly (Vinyl Alcohol) Composite Membrane with Polyamidoamine Dendrimers for Efficient Separation of CO2/H2 and CO2/N2

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Although polyvinyl alcohol (PVA) membranes are commonly used for CO2 separation, there is still large development space in mechanical properties and high selectivity of the gas separation process. In this study, the gas separation performance and mechanical properties of the (PVA/Cu2+) substrate membranes were improved by introducing polyamidoamine (PAMAM). PAMAM had an important effect on the gas adsorption and separation performance of the membrane. In addition, the gas adsorption and separation properties of the PVA/Cu2+/PAMAM membrane (PPCm) were analyzed and studied when the inlet gas pressure and the species of mixed gases were variable. The results showed that the crystallinity and mechanical properties of the membrane with the PAMAM had been significantly improved. Young’s modulus of PPCm with 30% PAMAM was 132% higher than that of the PVA/Cu2+ composite membrane without PAMAM. In addition, efficient separation efficiency and high selectivity of the gas separation process were observed. The separation factors of the PPCm for CO2/H2 and CO2/N2 were about three times higher than that of the PVA/Cu2+ substrate membranes. These results suggested that the introduction of PAMAM was promising for CO2 separation and permeance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torstensen JØ, Helberg RML, Deng L, Gregersen ØW, Syverud K (2019) PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. Int J Greenh Gas Control 81:93–102. https://doi.org/10.1016/j.ijggc.2018.10.007

    Article  CAS  Google Scholar 

  2. Maheswari AU, Palanivelu K (2017) Separation of carbon dioxide and nitrogen gases using novel composite membranes. Can J Chem 95(1):57–67. https://doi.org/10.1139/cjc-2016-0090

    Article  CAS  Google Scholar 

  3. Iyer GM, Liu L, Zhang C (2020) Hydrocarbon separations by glassy polymer membranes. J Polym Sci 58(18):2482–2517. https://doi.org/10.1002/pol.20200128

    Article  CAS  Google Scholar 

  4. Francisco GJ, Chakma A, Feng X (2007) Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. J Membr Sci 303(1–2):54–63. https://doi.org/10.1016/j.memsci.2007.06.065

    Article  CAS  Google Scholar 

  5. Wang Z, Pan Z (2015) Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration. Appl Surf Sci 356:1168–1179. https://doi.org/10.1016/j.apsusc.2015.08.211

    Article  CAS  Google Scholar 

  6. Liu H, Liang X (2011) Strategy for promoting low-carbon technology transfer to developing countries: the case of CCS. Energy Policy 39(6):3106–3116. https://doi.org/10.1016/j.enpol.2011.02.051

    Article  CAS  Google Scholar 

  7. Taniguchi I, Kinugasa K, Toyoda M, Minezaki K (2017) Effect of 8 structure on CO2 capture by polymeric membranes. Sci Technol Adv Mater 18(1):950–958. https://doi.org/10.1080/14686996.2017.1399045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mondal A, Barooah M, Mandal B (2015) Effect of single and blended amine carriers on CO2 separation from CO2 /N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. Int J Greenh Gas Control 39:27–38. https://doi.org/10.1016/j.ijggc.2015.05.002

    Article  CAS  Google Scholar 

  9. Shirvani H, Sadeghi M, Taheri Afarani H, Bagheri R (2018) Polyurethane/poly(vinyl alcohol) blend membranes for gas separation. Fibers Polym 19(5):1119–1127. https://doi.org/10.1007/s12221-018-1023-6

    Article  CAS  Google Scholar 

  10. Liu Q, Ge X, Xiang A, Tian H (2016) Effect of copper sulfate pentahydrate on the structure and properties of poly(vinyl alcohol)/graphene oxide composite films. J Appl Polym Sci. https://doi.org/10.1002/app.44135

    Article  Google Scholar 

  11. Comesaña-Gándara B, Chen J, Bezzu CG, Carta M, Rose I, Ferrari MC, Esposito E, Fuoco A, Jansen JC, McKeown NB (2019) Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ Sci 12(9):2733–2740

    Article  Google Scholar 

  12. Lilleby Helberg RM, Dai Z, Ansaloni L, Deng L (2020) PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: synergistic enhancement of CO2 separation performance. Green Energy Environ 5(1):59–68. https://doi.org/10.1016/j.gee.2019.10.001

    Article  Google Scholar 

  13. Jahan Z, Niazi MBK, Hägg M-B, Gregersen ØW (2018) Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure. J Membr Sci 554:275–281. https://doi.org/10.1016/j.memsci.2018.02.061

    Article  CAS  Google Scholar 

  14. Edubilli S, Gumma S (2019) A systematic evaluation of UiO-66 metal organic framework for CO2/N2 separation. Sep Purif Technol 224:85–94. https://doi.org/10.1016/j.seppur.2019.04.081

    Article  CAS  Google Scholar 

  15. Shakeel I, Hussain A, Farrukh S (2019) Effect analysis of nickel ferrite (NiFe2O4) and titanium dioxide (TiO2) nanoparticles on CH4/CO2 gas permeation properties of cellulose acetate based mixed matrix membranes. J Polym Environ 27(7):1449–1464. https://doi.org/10.1007/s10924-019-01442-x

    Article  CAS  Google Scholar 

  16. Deeksha B, Sadanand V, Hariram N, Rajulu AV (2021) Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J Bioresources Bioproducts 6(1):75–81. https://doi.org/10.1016/j.jobab.2021.01.003

    Article  CAS  Google Scholar 

  17. Barooah M, Mandal B (2019) Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane. J Membr Sci 572:198–209. https://doi.org/10.1016/j.memsci.2018.11.001

    Article  CAS  Google Scholar 

  18. Niazi MBK, Jahan Z, Ahmed A, Rafiq S, Jamil F, Gregersen ØW (2020) Effect of Zn-Cyclen mimic enzyme on mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposite membranes. J Polym Environ 28(7):1921–1933. https://doi.org/10.1007/s10924-020-01737-4

    Article  CAS  Google Scholar 

  19. Ashok B, Hariram N, Siengchin S, Rajulu AV (2020) Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method. J Bioresources Bioproducts 5(3):180–185. https://doi.org/10.1016/j.jobab.2020.07.003

    Article  CAS  Google Scholar 

  20. Robeson LM (2008) The upper bound revisited. J Membr Sci 320(2008):390–400

    Article  CAS  Google Scholar 

  21. Fadhel B, Hearn M, Chaffee A (2009) CO2 adsorption by PAMAM dendrimers: significant effect of impregnation into SBA-15. Microporous Mesoporous Mater 123(1–3):140–149. https://doi.org/10.1016/j.micromeso.2009.03.040

    Article  CAS  Google Scholar 

  22. Dutcher B, Fan M, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013-a review. ACS Appl Mater Interfaces 7(4):2137–2148. https://doi.org/10.1021/am507465f

    Article  CAS  PubMed  Google Scholar 

  23. Barooah M, Mandal B (2018) Enhanced CO2 separation performance by PVA/PEG/silica mixed matrix membrane. J Appl Polym Sci. https://doi.org/10.1002/app.46481

    Article  Google Scholar 

  24. Gong P, Zhao Y, Li K, Tian H, Li C (2021) Effect of plasticizer content on the structure and properties of SPI/MA-g-PBAT blend films. J Polym Environ. https://doi.org/10.1007/s10924-021-02223-1

    Article  Google Scholar 

  25. Li K, Fan G, Tian H, Yuan L, Yao Y, Xiang A, Luo X (2021) Highly oriented thermoplastic Poly (vinyl alcohol) films by uniaxial drawing: effect of stretching temperature and draw ratio. J Polym Environ 29(10):3263–3270. https://doi.org/10.1007/s10924-021-02113-6

    Article  CAS  Google Scholar 

  26. Wang X, Chen H, Zhang L, Yu R, Qu R, Yang L (2014) Effects of coexistent gaseous components and fine particles in the flue gas on CO2 separation by flat-sheet polysulfone membranes. J Membr Sci 470:237–245. https://doi.org/10.1016/j.memsci.2014.07.040

    Article  CAS  Google Scholar 

  27. Niazi MBK, Jahan Z, Berg SS, Gregersen OW (2017) Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohydr Polym 177:258–268. https://doi.org/10.1016/j.carbpol.2017.08.125

    Article  CAS  PubMed  Google Scholar 

  28. Klepić M, Setničková K, Lanč M, Žák M, Izák P, Dendisová M, Fuoco A, Jansen JC, Friess K (2020) Permeation and sorption properties of CO2-selective blend membranes based on polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) ionic liquid for effective CO2/H2 separation. J Membr Sci. https://doi.org/10.1016/j.memsci.2019.117623

    Article  Google Scholar 

  29. Dong S, Wang Z, Sheng M et al (2020) High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation[J]. J Membr Sci 610:118221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (2202014), School Level Cultivation Fund of Beijing Technology and Business University for Distinguished and Excellent Young Scholars (BTBUYP2021), funding of Hubei key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huafeng Tian, Xiaogang Luo or Xingwei Shi.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influnence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Tian, H., Ouyang, Y. et al. Poly (Vinyl Alcohol) Composite Membrane with Polyamidoamine Dendrimers for Efficient Separation of CO2/H2 and CO2/N2. J Polym Environ 30, 4193–4200 (2022). https://doi.org/10.1007/s10924-022-02491-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02491-5

Keywords

Navigation